
Horizon 2020 PROGRAMME ICT-01-2014: Smart Cyber-Physical Systems

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No 643924

D4.7
Demonstrator 3
EoT Application

Copyright © 2018 The EoT Consortium

The opinions of the authors expressed in this document do not necessarily reflect
the official opinion of EOT partners or of the European Commission.

1. DOCUMENT INFORMATION

Authors J.M. Rico (UCLM)

J.L. Espinosa-Aranda (UCLM)
N. Vallez (UCLM)
J. Parra (UCLM)
M. Herbst (EVERCAM)
V. Quinn (EVERCAM)
J. Farooq (EVERCAM
A. Pagani (DFKI)

Responsible Author Alain Pagani (DFKI)

e-mail: alain.pagani@dfki.de

Keywords Demonstrator 3 – Flexible Mobile Camera

WP/Task WP4

Nature Other

Dissemination Level PU

mailto:alain.pagani@dfki.de

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 3 of 25

2. DOCUMENT HISTORY

Person Date Comment Version

Alain Pagani 06.06.2018 Delivered version 1.0

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 4 of 25

3. ABSTRACT

This document describes the EoT Device application of the Flexible Mobile Camera
demonstrator. The Flexible Mobile Camera demonstrator describes a portable
smart camera powered by the EoT Device.

This document presents the development process of the demonstrator and the
requirements fulfilled and a brief explanation of the main application implemented.
Moreover, the EoT libraries used are indicated.

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 5 of 25

4. TABLE OF CONTENTS

1. Document Information .. 2
2. Document History .. 3
3. Abstract .. 4
4. Table of Contents ... 5
5. Introduction .. 6
6. Short description of the demonstrator .. 7
7. EoT Application Software Description .. 8

1. Requirements ... 8
2. Modules ... 9
3. Software architecture .. 12

8. EoT Application Software Documentation .. 15
1. EoT libraries used .. 15
2. Configuration of the EoT Device .. 15
3. Use cases ... 16

9. Conclusions ... 25

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 6 of 25

5. INTRODUCTION

This document describes the Flexible Mobile Camera demonstrator EoT Device
application. In this demonstrator, the EoT Device is connected to an Android device
and two cloud services, Firebase Cloud Messaging and Google Cloud Storage.

To carry out this communication, the EoT Device must be configured. This
configuration assumes that:

• The EoT device has the necessary files stored in the SD card.
• The EoT device has a valid network profile.
• The EoT device can connect with Firebase Cloud Messaging and Google

Cloud Storage. This step requires flashing a security certificate.
• The EoT device can change the images capture configuration.

The Flexible Mobile Camera demonstrator is configured using the configuration
application.

The EoT Device application can be found in
https://gitlab.com/espiaran/EoT/tree/master/WorkPackage_4/Lifelogging_Camer
a/EoT Device/WearableEoT Device

The reviewers will be able to access the private parts of the code on request.

https://gitlab.com/espiaran/EoT/tree/master/WorkPackage_4/Lifelogging_Camera/myriad/WearableMyriad
https://gitlab.com/espiaran/EoT/tree/master/WorkPackage_4/Lifelogging_Camera/myriad/WearableMyriad

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 7 of 25

6. SHORT DESCRIPTION OF THE DEMONSTRATOR

Figure 1: Narrative Clip

Other examples of secondary features include:
• Retrieval / Browsing … by grouping images by, for example, similarity, one
can offer an improved image navigation experience.
• Cloud Applications such as a “Daily Collage” curating a single image with all
the key events of the day.

The EoT device would differ in its ability to do image processing locally, enabling:

• Smart Storage (Only store what’s needed)
• Annotation (Compile meta data for queries such as “show me all faces”)
• Smart Alerts (Alert (e.g. to Smartwatch))

For each stored photo, the cameras would also store meta data by running each
of the EoT device’s capabilities on the image to either trigger alerts, enable
queries or schedule deletion.

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 8 of 25

7. EOT APPLICATION SOFTWARE DESCRIPTION

1. Requirements

1. Functional requirements

Below are listed each of the requirements with a brief description of the goal. These
requirements are a revision of the original requirements. The original requirements
can be consulted in the ‘Annex 2: Demonstrator Requirements Documents’. The
REQ008 described in that document, GPS Awareness, has been removed because
the EoT Device has no GPS.

ID Name Priority Difficulty Description

REQ001 Store Images High Low Store images to SD card

REQ002 Classify Images High High Determine the contents of
the image

REQ003 Synchronise to
Cloud High High Copy fresh images to cloud

& free up local storage

REQ004 Firmware
Updates High High Retrieve firmware updates

remotely

REQ005 Settings Sync Medium High Retrieve new settings

REQ006 Image Content
Meta Data High High

Transmit Meta Data about
Image Content (Faces,
Objects etc.)

REQ007 Connect to
bridge High Low Connect to mobile phone

using bridge concept

REQ008 Apps Sync High High Retrieve new apps

REQ009 Alerts High Low MQTT style messaging

The above table shows the requirements of the complete demonstrator. It
includes the EoT Device application and the Configuration application.

The EoT Device application includes the REQ001, REQ002, REQ006 and REQ009
functional requirements. There are two functional requirements shared between
the EoT Device application and Configuration application. These requirements are
the REQ005 and REQ007.

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 9 of 25

The WebApp includes the REQ008 functional requirement.

The REQ004 must be done using other application. This application is the Pulga
Control App in the PC part and the bootloader in the EoT Device part.

2. Non-functional requirements

ID Name Type Priority Difficulty Description

NFR001 Battery duration Performance High High

Battery of the
device used in the
system should last
for more than one
hour at least

NFR002 Ruggedness Performance High Low

The device must be
able survive
splashes and
dropping

NFR003 Storage of images Performance High Low
Phone must store a
reasonable # of
images (128GB?)

NFR004 Storage of 3rd party
data Performance Med Med For social network

apps

The most of the non-functional requirements are achieved due to the
characteristics of the EoT device, as the NRF001 and the NFR003 non-functional
requirements. The connectivity with 3rd party data (NFR004 non-functional
requirements) is achieved thanks to the WebApp.

In the original non-functional specification there was five non-functional
requirements. In this update, the NFR005 (Sync via mesh of other phones)
requirement has been finally discarded because it was not necessary for the
functionality of the demonstrator.

2. Modules

This section describes the composition of the EoT Device application. It consists of
seven modules. Most of them include parts of various functional requirements.
Others complete some requirement.

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 10 of 25

1. Capture modes module

1. Description

This module provides the different capture modes. The demonstrator has two
capture modes:

• Normal mode: In this mode, one image is captured every X seconds.
• Smart mode: Each image is examined and in case it contains a key event

(as defined in the configuration), the image will be stored.

2. Achieved Requirements

This module does not achieved a requirement, but it helps to get the REQ001,
REQ002, REQ006 and REQ009 functional requirements.

2. Classification of images module

1. Description

The method used to classify the images captured by the previous module is
implemented in this module. This module allows to the demonstrator to classify
the following ‘key events’.

• FaceDetected. There is a face in the image.
• LargeFaceDetected. There is a near face in the image. A near face may be

indicative of interaction with that person.
• Anger. There is an angered face in the image.
• Disgust. There is a disgusted face in the image.
• Fear. There is a scared face in the image
• Happiness. There is a happy face in the image.
• Neutral. There is a neutral face in the image.
• Sadness. There is a sad face in the image.
• Surprise. There is a surprised face in the image.
• MotionDetected. A movement has been detected.

2. Achieved Requirements

This module does achieved the REQ002 functional requirement. It helps to get the
REQ006 and REQ009 functional requirements.

3. Image Storage module

1. Description

Management of the SD card storage is included in this module. The image
storage module has 3 functionalities:

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 11 of 25

• Storage. With this functionality, the images and metadata are stored in the
SD card.

• Recovery. With this functionality, the images and metadata are retrieved
and prepared to be sent through MQTT.

• Erasing. Using this functionality, when the images are sent to the
configuration application, they will be removed from the SD card.

2. Achieved Requirements

This module does achieved the REQ001 and REQ006 functional requirements. It
helps to get the REQ003 and REQ005 functional requirements.

4. MQTT Broker module

1. Description

The MQTT broker handling Wi-Fi communications is implemented in this module.
This broker will run in the EoT Device. This module is formed by the following sub
modules.

• MQTT topics. This sub module contains the MQTT topics, the payload of each
topic and how to work with this payload will be specified.

• MQTT broker. The MQTT broker is able to:

o Accept connections.
o Send images and their metadata.
o Receive configuration parameters.
o Receive application updates.

2. Achieved Requirements

This module does achieved the REQ003 functional requirement. It helps to get the
REQ005 functional requirement.

5. Notifications module

1. Description

This module is responsible for the alarm functionality. The notifications module
works according to what is explained in the section 8.2.6. The notifications are
received by the Android App.

2. Achieved Requirements

This module does achieved the REQ009 functional requirement.

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 12 of 25

6. Configuration section module

1. Description

With this module, the EoT Device configuration is possible. This configuration
includes:

• Setting alarms.
• Setting capture mode.
• Setting network parameters.
• Setting the MQTT parameters.

The EoT Device receives the configuration parameters wirelessly using the MQTT
protocol. The EoT Device application running in the EoT device stores/updates
the configuration in a file in the SD card.

2. Achieved Requirements

This module does achieved the REQ005 functional requirement.

7. Connectivity

1. Description

This module adds to the demonstrator the possibility of the connection of the EoT
device with a network and the Android app.

2. Achieved Requirements

This module does achieved the REQ007 functional requirement. It helps to get the
REQ003, REQ005, and REQ009 functional requirements.

3. Software architecture

The following image shows the demonstrator structure. It includes the EoT device,
the configuration application, the WebApp and the communications and
connections.

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 13 of 25

Figure 2: Demonstrator structure

This document is focused on the EoT Device Application. Therefore, the specific
scheme is shown by the next figure.

Figure 3: EoT Device Application structure

In the Figure 3, it is possible to see:

• The EoT device captures and classifies images.
• The EoT Device application starts a MQTT broker in the EoT device. Using

the MQTT broker, the EoT device is able to send images to the connected
Android device. In the same way, using the MQTT broker, the EoT device is
able to receive the capture configuration.

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 14 of 25

• The EoT device is able to communicate directly with the Firebase Cloud
Messaging and the Google Storage Cloud services. This way, the EoT Device
is able to send push notifications with an image. This process is carried out
with HTTP requests.

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 15 of 25

8. EOT APPLICATION SOFTWARE DOCUMENTATION

1. EoT libraries used

To develop the EoT Device application of the Flexible Mobile Camera demonstrator,
the following EoT libraries have been used:

• WifiFunctions: This library is used to connect the EoT Device with a
network. In addition, the library allows connect the EoT Device with the
Firebase and Google Cloud services.

• SDCardIO: This library is used to store the images and their metadata in
the SDCard and to load the neuronal network from the SDCard

• TimeFunction: This library is used to update the time and date of the EoT
device.

• Camera: This library is used to capture the images using the camera.
• MQTT: This library is used to create a MQTT broker. This broker is used to

communicate the EoT Device with the configuration application.
• tiny_dnn: tiny_dnn is a C++14 implementation of deep learning. It is

suitable for deep learning on limited computational resource, embedded
systems and IoT devices. This library is used to detect the facial expression
of the captured images.

• JsonParser: This library is used to read/write the configuration file.
• Libccv/OpenCV: These libraries are used to work with the capture image.

These libraries allow using computer vision algorithms, as face detection,
image rotation, etc.

2. Configuration of the EoT Device

In order to save the network configuration, the EoT Device uses the CC3100 flash
memory. The network profiles will be stored in the CC3100 flash memory. The
same will happened with the security certificate.

To connect the EoT Device to the Firebase and Google cloud services is necessary
to flash a security certificate in the CC3100 flash memory. Since April 2018, the
necessary certificate to make this connection is the GS Root R2 certificate.

To do this, the wifiFlashCertificate application can be used. This application flashes
the GS Root R2 certificate in the CC3100 flash memory with the name
/cert/gsr2.der.

In order to use the wifiFlashCertificate application, the user must store the
certificate file in the root of the SD card with the name “gsr2.der” and run the
wifiFlashCertificate application. This application can be downloaded from:
https://gitlab.com/espiaran/EoT/tree/UCLM_FFBoard_mdk_17.04.5/WorkPackag
e_3/myriad/apps/flashWifiCertificate. The certificate file can be downloaded from
the same web (googleG3.der)

https://gitlab.com/espiaran/EoT/tree/UCLM_FFBoard_mdk_17.04.5/WorkPackage_3/myriad/apps/flashWifiCertificate
https://gitlab.com/espiaran/EoT/tree/UCLM_FFBoard_mdk_17.04.5/WorkPackage_3/myriad/apps/flashWifiCertificate

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 16 of 25

The EoT Device application uses a neuronal network able to detect facial
expressions. This network must be stored in the SD card in a folder named ‘nviso2’
placed in the root of the SD card. In the same way, the necessary files for the face
detection must be stored in the SD card in a folder named ‘Rotation-
invariant_faceDetector\face’ placed in the root of the SD card.

Finally, a folder named ‘WearableEoTImages’ must be created in the SD Card root.
This folder will contain the stored images and tags.

3. Use cases

1. Initial configuration

1. Description

When the EoT device is not configured, the EoT Device application will start the
EoT device in AP mode and it will run a MQTT Broker. This way, the EoT device will
be waiting for a MQTT client. This MQTT client will be the configuration application,
and the configuration will start at this point.

Just before creating the MQTT broker, the EoT Device will create an empty JSON
configuration file in the SD card.

{
 "Configuration": [{
 "captureMode": 0,
 "capturePeriod": 5,
 "blur": 0,
 "store": 0,
 "imu": 0,
 "refreshToken": "",
 "uid": "",
 "Alarms": [{
 "faceDetected": 0,
 "largeFaceDetected": 0,
 "anger": 0,
 "disgust": 0,
 "fear": 0,
 "happiness": 0,
 "neutral": 0,
 "sadness": 0,
 "surprise": 0,
 "motionDetected": 0
 }],
 "KeyEvents": [{
 "faceDetected": 0,
 "largeFaceDetected": 0,
 "anger": 0,
 "disgust": 0,
 "fear": 0,
 "happiness": 0,
 "neutral": 0,
 "sadness": 0,
 "surprise": 0,
 "motionDetected": 0
 }],

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 17 of 25

 "ROI": [{
 "BS": 0,
 "ROIx": 0,
 "ROIy": 0,
 "ROIw": 479,
 "ROIh": 255
 }]
 }]
}

As shown, the configuration file contains the key events and the capture options.
In addition, the configuration file has the ‘UID’ and ‘refreshToken’ parameters.
These parameters are obtained from the configuration application in the initial
configuration and they are necessary to the correct working of the EoT Device
application. Without them, the EoT device will not be able to communicate with
Firebase and Google cloud services.

When a MQTT client connects with the EoT Device, the EoT Device application will
be waiting for the configuration request. When the configuration request occurs,
the EoT Device application will send the MAC direction of the EoT device to the
MQTT client and it will receive the UID and access_token parameters.

The next step is to obtain and store a network profile. This profile is sent by the
configuration application and it will be stored in the flash memory of the CC3100.
After that, the EoT device will finish it configuration following the next steps:

• The EoT device will change from AP mode to Station mode-
• The EoT device will try to connect with a valid network profile
• The EoT device will try to obtain a correct date.
• The EoT device will try to connect with the Google Cloud Storage and

Firebase Cloud Messaging servers. In the first configuration, obtaining the
‘refreshToken’ is necessary. The EoT Device application will send request to
the Firebase and Google servers to obtain this token.

Once the previous steps are finished, the EoT Device application is configured. The
configuration file after this process can be see below:

{
 "Configuration": [{
 "captureMode": 1,
 "capturePeriod": 5,
 "blur": 0,
 "store": 1,
 "imu": 0,
 "refreshToken": "1/5UJMdH1VbUeCiVDzhrsmlq3h7X6pKLBW1GSnUotwuts",
 "uid": "fc0AxWAW70dUseZVXFzppXmuWoX2",
 "Alarms": [{
 "faceDetected": 1,
 "largeFaceDetected": 1,
 "anger": 0,
 "disgust": 0,
 "fear": 0,
 "happiness": 0,
 "neutral": 0,
 "sadness": 0,

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 18 of 25

 "surprise": 0,
 "motionDetected": 0
 }],
 "KeyEvents": [{
 "faceDetected": 1,
 "largeFaceDetected": 0,
 "anger": 0,
 "disgust": 0,
 "fear": 0,
 "happiness": 0,
 "neutral": 0,
 "sadness": 0,
 "surprise": 0,
 "motionDetected": 0
 }],
 "ROI": [{
 "BS": 0,
 "ROIx": 0,
 "ROIy": 0,
 "ROIw": 479,
 "ROIh": 255
 }]
 }]
}
If the configuration process fails, the user must delete the configuration file created
in the SD card and must start the configuration process from the beginning.

2. Achieved requirements

This use case shows that the REQ007 has been developed correctly. In addition,
this use case configures the EoT Device for the rest of functional requirements.

2. Start and connection to the configuration app

1. Description

If the EoT device is correctly configured, the EoT Device application will load the
configuration file and will try to connect to an AP using a stored network profile.

If this step is successful, the EoT Device application will start the Normal scenario.

Normal scenario: Internet connection

After loading the configuration file, the application will try to connect to a network
profile. If the connection is successful, the EoT Device application will configure
the hour and the date of the EoT device and will establish a connection with the
Google Cloud Storage and Firebase Cloud Messaging cloud server.

Following this, the EoT Device application will send the IP and port of the EoT
Device through a push notification. This push notification will be sent to a Topic.
For security reasons, the topic will be the UID of the user. This parameter is known
by both sides, and the configuration application is subscribes to it.

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 19 of 25

After this step, the EoT Device application will be waiting to a MQTT client. When
a MQTT client connects to the MQTT broker, the EoT Device will load the CNN for
the expression detection. Finally, the EoT device will be able to capture images.

Alternative scenario: Without Internet connection

After loading the configuration file, the application will try to connect to a network
profile. If the connection is not successful, the EoT Device application will configure
the EoT Device in AP mode. In addition, the EoT Device application will run a MQTT
broker, and will be waiting for an MQTT Client.

When a MQTT Client connects with the EoT Device, the EoT Device will load the
CNN for the expression detection. Finally, the EoT device will be able to capture
images.

In this scenario the push notification will not work because there is not
communication with Firebase and Google Cloud servers

3. Capture settings

1. Description

The EoT Device will capture images according to it capture configuration. The
capture configuration includes the active/disable ‘key events’. The configuration is
changed by the configuration Application and the EoT Device receives the changes
using the MQTT broker.

When a capture change comes, the EoT Device application updates it configuration.
However, this communication is not stored in the configuration file until the
configuration application leaves the operation menu.

The same behaviour is given in the configuration of the alarms.

2. Achieved requirements

This use case shows that the REQ005 has been developed correctly.

4. Images capture

1. Description

There are two capture modes. The Normal mode and the Smart Mode. In the
normal mode, one picture is stored each X seconds. The user using the
configuration application can configure the X parameter.

In the smart mode, the images are stored if they have an active ‘key event’.

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 20 of 25

The images are stored in the micro SD. Besides each image, a text file with the
metadata of the image is stored. This text file contains the ‘key events’ actives in
the image.

If the store option is disabled, only the text file with the metadata of the image
will be stored.

2. Achieved requirements

This use case shows that the REQ001, REQ002 and REQ006 has been developed
correctly.

5. Synchronise

1. Description

When the configuration application requests a sync, a MQTT message is sent to
the EoT Device using MQTT. Once received, the EoT Device application will start to
send the images and their metadata to the configuration application using MQTT.
In this moment, the image capture stops.

When an image is sent to the configuration application, the image and its metadata
is deleted from the SD card.

Once sent the images and their metadata, the EoT Device application returns the
EoT device to its previous state.

2. Achieved requirements

This use case shows that the REQ003 has been developed correctly

6. Push notification

1. Description

The EoT Device application allows configuring the ‘key events’ for the alarms, in
the smart mode. When a ‘key event’ occurs and it alarm is active, the EoT Device
application will send the captured image to the Google Cloud Storage and it will
use the FCM service to notify to the configuration control that an alarm has been
generated.

The global scheme is the following:

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 21 of 25

Figure 4: Push notification scheme

The Figure 4 shows the process followed by the EoT device to send an image to
the GCS and generate a push notification. The process is divided in four steps:

1- In this step, the EoT Device obtains the necessary tokens to send files to
the GCS. This process is only performed when the device is initially
configured.

a. When the user signs in with a Google account, the Android App
obtains the Authorization code. This Authorization code can be
modified to a different scope. In this case, the Android App provides
permissions in the
https://www.googleapis.com/auth/devstorage.read_write scope.

b. The Authorization code will be sent to the EoT device using the MQTT
protocol.

c. To send a file to the GCS it is necessary to obtain the access token,
being required in the HTTP Request in the Authentication header.
When the EoT device sends it to Google’s OAuth 2.0 server, this
server responses with the Refresh Token and the Access Token. The
Access token expires after 3600 seconds, but it can be updated with
the Refresh token.

https://www.googleapis.com/auth/devstorage.read_write

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 22 of 25

HTTP Request

Figure 5: HTTP Request to get the access token

HTTP Response

Figure 6: HTTP Response with the access token and the

refresh_token

2- This step is performed every time the EoT device sends an image to the
GCS.

a. First, the EoT Device updates the Access token. This procedure can
be done at any time, even if it has not expired. The EoT device sends
an HTTP Request with the Refresh token to Google’s OAuth 2.0 server
and the server responses with a new Access token.

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 23 of 25

HTTP Request

Figure 7: HTTP Request to update the access token

HTTP Response

Figure 8: HTTP Request with the updated access token

b. After that, the EoT Device sends an image to the GSC using an HTTP

Request. The Access token is included in the Authorization header.

HTTP Request

Figure 9: HTTP Request to send an image to GSC

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 24 of 25

3- After the GSC has received the image, the EoT Device sends a push
notification to the Android App.

a. The EoT Device generates a push notification through an HTTP
Request and sends it to the FCM server.

Figure 10: HTTP Request to send a push notification using
FCM

b. The FCM server sends the push notification to the Android App.

4- When the Android app receives the push notification, it extracts the

necessary information. This information does not contain the image (the
maximum size of a push notification with data is 4 kb), it contains the name
of the image. This way, the Android app is able to download the defined
image from the GCS using the Firebase Cloud Storage library.

2. Achieved requirements

This use case shows that the REQ009 has been developed correctly.

D4.7 Demonstrator 3, EoT Application H2020-643924-EoT

Page 25 of 25

9. CONCLUSIONS

In this deliverable, the EoT Device application of the Flexible Mobile Camera
demonstrator has been described. The document collects the functional and non-
functional requirements and the planning of the development.

The demonstrator was divided in different modules. Each module has an objective
and achieves one or more functional requirements. In addition, the software
architecture of the EoT Device application has been explained.

The EoT libraries used to build the Flexible Mobile Camera demonstrator have been
indicated.

Finally, the use cases of the EoT Device application have been exposed. Each use
case is accompanied by a description and the functional requirements achieved by
it.

- End of document -

	1. Document Information
	2. Document History
	3. Abstract
	4. Table of Contents
	5. Introduction
	6. Short description of the demonstrator
	7. EoT Application Software Description
	1. Requirements
	1. Functional requirements
	2. Non-functional requirements

	2. Modules
	1. Capture modes module
	1. Description
	2. Achieved Requirements

	2. Classification of images module
	1. Description
	2. Achieved Requirements

	3. Image Storage module
	1. Description
	2. Achieved Requirements

	4. MQTT Broker module
	1. Description
	2. Achieved Requirements

	5. Notifications module
	1. Description
	2. Achieved Requirements

	6. Configuration section module
	1. Description
	2. Achieved Requirements

	7. Connectivity
	1. Description
	2. Achieved Requirements

	3. Software architecture

	8. EoT Application Software Documentation
	1. EoT libraries used
	2. Configuration of the EoT Device
	3. Use cases
	1. Initial configuration
	1. Description
	2. Achieved requirements

	2. Start and connection to the configuration app
	1. Description

	3. Capture settings
	1. Description
	2. Achieved requirements

	4. Images capture
	1. Description
	2. Achieved requirements

	5. Synchronise
	1. Description
	2. Achieved requirements

	6. Push notification
	1. Description
	2. Achieved requirements

	9. Conclusions

