Horizon 2020 PROGRAMME ICT-01-2014: Smart Cyber-Physical Systems

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No 643924

EYES DF THINGS

D4.1
Demonstrator 1,
Configuration App

HORIZON 2020

PROGRAM DE RECHERCHE ET
D’ I\N”“ /ATION)Fl UNION EUROPEENNE

Copyright © 2018 The EoT Consortium

The opinions of the authors expressed in this document do not necessarily reflect
the official opinion of EOT partners or of the European Commission.

1 DOCUMENT INFORMATION

Authors T. Larmoire (THALES)
C. Fedorczak (THALES)
A. Pagani (DFKI)

Responsible Author Alain Pagani
e-mail: alain.pagani@dfki.de

Keywords Demonstrator 1 — Peephole demonstrator
WP/Task WP4
Nature Internal document

Dissemination Level PU

mailto:alain.pagani@dfki.de

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

2 DOCUMENT HISTORY

Person Date Comment Version

Alain Pagani 06.06.2018 Delivered version 1.0

Page 3 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

3 ABSTRACT

This document is a software description document that accompanies the
deliverable D4.2 “Peephole Demonstrator Configuration App”. This deliverable is
the software developed on the companion device (here a smartphone running
Android) in order to implement the Peephole surveillance demonstrator. The
software is made available to the reviewers on a GitLab server. This document
first provides a short description of the demonstrator and its features. It then
describes the developed software that runs on the companion device.

Page 4 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

4 TABLE OF CONTENTS
1 Document INTOrMATION ...ttt aaeeaas 2
PZANN © (o 1ol 81 0 =T o ol o 1] 10 Y/ P 3
B A ACT .. e 4
4 Table Of CONTENTS ...ttt ettt e e eneens 5
C S 10 0 To L6 o T o 6
6 Short description of the demonstratorccoiiiiiiiiiii e 7
6.1 Description Of the USE-CasSeScciiiiii ittt e eeeeeaas 7
6.2 Description of the parts used for the development................ccooiiieen.. 9
6.3 Software ArChiteCTUIeooi ettt 10
6.4 Hardware SeUT-UpPcoie ittt e 13
7 IFOYD App Software DesCriptionooiiiiii i e 18
7.1 Demonstrator reqUIrEMENTS.ot eeanes 18
7.2 SoOftware desSCriPtiONt eanes 21
8 IFOYD App Software Documentationcoiiiiiiiiiiiiiiiiiii i eeaaaee 23
8.1 Launching the TFOY D AP . ettt et eeeaeeaaaas 23
2 Y/ = V1 T 0 = o 1 24
G I OTo] o T U = | f o o S P 25
S - 1o o= - 26
S TS T 10 1 27
8.6 Detection Event lISto e 28
LS T ©0] 1o 1= T o 30

Page 5 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

5 INTRODUCTION

The initial specification of the peephole requirements was started in April 2015
and was finalised in 2016. It continued to be refined in parallel to the progress of
the hardware design (WP2) and the middleware design (WP3). It describes the
different use cases associated with the peephole demonstration.

The requirements for the peephole demonstrator have been chosen to fulfil
common needs in the security market but also to test features of increasing
complexity in terms of processing power for the EoT device, in order to evaluate
the limits achievable in terms of edge processing.

. . ~ ;';
Figure 1 - EOT and IFOYD App development

The demonstrator is composed of the EOT device running the application
software, developed by DFKI, and the Android Smartphone with the IFOYD
(In Front Of Your Door) app, developed by Thales. This document describes
the configuration application software developed for the Android device.

As an additional task, an EoT device simulator running on a laptop has been
developed by Thales in order to start the development of the App while the EoT
device was still in development. This software is also described briefly.

The App software has been stored in the Gitlab repository:

https://qitlab.com/espiaran/EoT/tree/peephole/WorkPackage 4/Peephole/androi
d

The reviewers will be able to access the private parts of the code on request.

Page 6 of 38

https://gitlab.com/espiaran/EoT/tree/peephole/WorkPackage_4/Peephole/android
https://gitlab.com/espiaran/EoT/tree/peephole/WorkPackage_4/Peephole/android

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

6 SHORT DESCRIPTION OF THE DEMONSTRATOR

The Peephole demonstrator is composed of an EoT device and an Android Smart
Phone with a dedicated App to exchange commands and data with the device.

N

1. Attach [3 2. Configure mp 3. Receive alarms

Figure 2 - Peephole demonstrator

After power on, the EoOT device connects to the network using its Wi-Fi
connection.

The Android phone has to connect to the device through the network to be able
to control it and receive data and alarms from it.

The EoOT device holds an MQTT broker that will manage the exchanges with the
Android phone. Several Android phones can be connected simultaneously to the
device and get alarms, images and video clips from the device.

The Android App that has been developed and that will be described in this
document is a functional prototype that gives access to the features of the EoT
peephole device. No effort was spent on the aesthetic aspect of the different
screens, as they are likely to be customised.

The interface specifications have been elaborated by DFKI and THALES based on
the general software architecture and the use of the PULGA broker.

A document called EOTMQTTProtocol_Vx has been created by DFKI in May
2017 and has been upgraded since then by DFKI and Thales. The last version of
the document is currently V5 and has been release on May 22, 2018. This
document is provided as an annex.

6.1 Description of the use-cases
The peephole demonstrator has been developed by DFKI and Thales according to

the requirements produced for WP2 and WP3.
To verify the completion of the requirements, five use cases have been selected:

Page 7 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

a. Surveillance:

The device is
continuously recording
in a circular buffer and
alarm is sent on motion
detection. Live view is
available on demand.

An alarm is sent in case
of a failure or a
tampering is detected.

Faces are detected and
cropped images of the
faces are recorded and
transmitted

Detected faces are
compared to a white list
stored in the EOT device,
and when a match occurs,
an event is generated.

A bidirectional audio link
Q”) is created between the
6 EoT device and the

((‘;%1 - “ Android Smartphone
& &

The original requirement analysis document mentioned marked two scenarios as
optional: Scenario 4: Face recognition, and Scenario 5: Bi-directional audio
transmission. These two scenarios were optional and were to be implemented
only after the successful implementation of the first three scenarios. After the
development of the three first scenarios, the allocated budget was already
consumed, and the optional scenarios have not been implemented.

Page 8 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

6.2 Description of the parts used for the development
The demonstrator implemented is composed of:

i. A Smartphone with the IFOYD App.

Figure 3: A view of the IFOYD app on the selected Smartphone

The Smartphone used for the test is a Samsung Galaxy 4, Model GT-19505. The
Android version installed on the Smartphone is Android 5.01 (Lollipop). The
IFOYD App has been developed in JAVA using Android SDK.

ii. A Wi-Fi access point:

Figure 4: Typical router for the Wi-Fi connection

A standard Wi-Fi access point is used in order to allow connection of the EoT
device and the Smartphone.

Page 9 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

il. The EoT device:

Figure 5: Early version of the EoT Device (R1)

The development has been done using the different releases of the EoT device.

iv. A laptop for the development

Figure 6: Laptop used for development

Thales does most of the developments on Linux (CentOS or Ubuntu). The EoT
App has been developed using Eclipse IDE under Ubuntu environment.

An EoT device simulator has also been developed running on that PC in order to
develop and debug more easily the Android App. This simulator will be described
below.

6.3 Software Architecture
6.3.1 EOT device

The software architecture for the EOT Device is described in a dedicated
document (Deliverable D4.1).
It is mainly composed of an application software and a communication module in
the form of an MQTT broker. This broker uses the PULGA library derived from the
MOSQUITTO implementation.

Page 10 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

EoT Device

EoT
Application

Figure 7: Architecture of the EoT Device Software

The connection is then established using the WiFi_Functions library.

6.3.2 Android App: IFOYD

This Application has been developed in JAVA using Eclipse and the Android SDK.
Elementary commands have been defined for the dialog between the EoT device
and the IFOYD App. They are described in the document:
EOTMQTTProtocol_v5.docx dated 22/05/2018, available in Annex.

Page 11 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

Android App

WiFi

e @S5 (MQTTclient) ()

Application

Figure 8: Architecutre of the android app

The app is using a Java MQTT Client library available in the Eclipse environment.
The main application is organised in different modules corresponding to the
elementary tasks needed for the communication with the EoT Device.

The IFOYD App is compiled to an .apk file that can be directly installed on the
Smartphone, once downloaded or copied in its memory.

The App installation process is standard and doesn’t require any specific
parameters.

An icon for the IFOYD app is created on the Applications pages and can be added
to one of the access screens.

In Front Of
Your Door

KEEO®

Téléphone Contacts Messages Internet Applis

Figure 9: Icon of the IFOYD app on the main screen

Page 12 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

6.3.3 EOT device simulator

The EoT device simulator has been developed on a laptop under Ubuntu and tcl
programming language.

Simulation Software

; WiFi
Mosquitto
test.tcl — mqtt.tel .
Application) |© | (MQTTclient) |© © (tnux e
i } R) MQTT broker

service)

Figure 10: Architecture of the EoT Device Simulator

Two main applications have been developed:

e test.tcl which is the application programme that simulates the EoT device,
responds to the commands sent by the IFOYD app and generates some
events.

¢ mgqtt.tcl which is an MQTT client. This module is launched directly by the
test.tcl programme.

The simulator also uses the MOSQUITTO process as an OS service. Ubuntu has
been configured to launch MOSQUITTO at boot.

This simulator uses some images and video sequences stored in the hard disk in
order to simulate the different functions and provides a terminal to display the
messages received from the Android app as well as the responses.

This simulator has proven very useful as separate teams located on different
sites and sharing different networks did the development of the EoT device
software and the Android app.

6.4 Hardware set-up
6.4.1 EOT device configuration

During the initial configuration of the EoT Device, it is necessary to configure the
IP address of the device. This is done using the bootloader and the software
Pulga for a first configuration step. The IP address of the device is configured by
default to 192.168.1.1 and the broker can be accessed on port 1883.

A change of the IP address and the broker port will be possible from the Android

device. This will need the “config” switch located on the EoT board to be pressed
for a least 3 sec. The EoT board will switch to configuration mode. Using the

Page 13 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

Configuration menu, the Android App will allow changing the IP address and the
broker port. This change will be effective when the “Apply” button of the App will
be pushed.

At the date of the report, this configuration is still in development.

6.4.2 Android Smartphone configuration

The Android Smartphone running the IFOYD app needs to be connected using its
Wi-Fi connection to the EoT device’ WiFi access point.

This is done directly in the settings of the phone. DHCP can be used as the EoT
device supports this feature.

Page 14 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

Once connected to the Wi-Fi, the IFOYD app can be launched. The first screen
shows the different tasks that can be accessed.

A BRUT Ll s2%M 22:36

In Front Of Your Door

Login

Configuration

Camera

Detection Event List

Figure 11: First screen with the different tasks

The focus is given on the login menu. As long as the connection hasn’t been
initialised with the EoT Device, the other menus cannot be accessed.

Once the “Login” button has been activated, a new page appears asking for the
EoT Device IP address (in fact the MQTT broker address).

The initial value for the broker has been defined to be 192.168.0.8. If the device
is not using this address, it can be edited directly on the address window.

The MQTT port is initialised by default to 1883 as TCP/IP port 1883 is reserved

with 1ANA for use with MQTT. TCP/IP port 8883 is also registered, for using MQTT
over SSL.

Page 15 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

2 A BRUT g e2vW 22:36

In Front Of Your Door

Broker address:

Port:

DISCONNECT

Figure 12: Configuration of the IP address and port

In the current version, the broker is embedded inside the device.

6.4.3 Simulator configuration

The laptop, running the simulator, needs to be connected to the same network
as the EoT Device, with access to the same segment. This connection is usually
done in Wi-Fi, but an Ethernet wired connection could also be used as the Wi-Fi
access point used for the Android Smartphone can be accessed.

By default, the MOSQUITTO service is launched at boot if Upstart is installed (by
default on Ubuntu).

The initialisation file “mosquitto.conf” is located in the /etc/init folder and
contains the MOSQUITTO setup. The default .conf file, provided with the
MOSQUITTO package, has been used.

The next step is to move to the simulator folder and to launch the ./test.tcl
programme.

Page 16 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

The terminal will display:

cfe@cfe-HP-ProBook-640-G1 /data/eot/EoT-peephole/WorkPackage_4/Peephole/android $
-/test.tcl

2002 0x20 2 0000

9003 0x90 3 000100
9003 0x90 3 000200
9003 0x90 3 000300
9003 0x90 3 000400
9003 0x90 3 000500
9003 0x90 3 000600

The simulator is now ready to respond to commands sent by the IFOYD app.

Page 17 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

7 IFOYD APP SOFTWARE DESCRIPTION

In this section, we will describe first the requirements of the demonstrator. Then
we will describe the software, in the configuration where the IFOYD app is
connected to the simulator as it allows monitoring the messages exchanged.

7.1 Demonstrator requirements

A requirements analysis has been conducted for all demonstrators in the first
phase of the project. The result of the analysis has been documented in a report
that has been submitted as an annex for the mid-term review (“Annex 27).

For the Peephole Surveillance demonstrator, the following requirements have
been identified. In the following table, we provide the name of each requirement,
and indicate if this requirement has been covered by the implementation or not.
In case the requirement was not implemented, we justify the modification of the
development plan in the last column.

ID Name Description Achieved

REQOO1 Connect to WiFi | Connection to the local Yes, Broker on the
hot spot network/Internet EoT device
Connect to the Yes

REQOO02 | PC or Connection to the app

Smatphone app

Set cloud address, login, Yes

REQOO3 | Module set-up password, application

REQOO0O4 | Start operation | Start the app on the module | Yes

REQOO5 | Stop operation Stop the app on the module Yes

Send the module status: Partially (Not
implemented:

e Active /Standby M d

e Event detected or not emory used,

e Last events battery level,
REQOO6 | Status « Memory used/remaining | S3Mera status —

 Battery level justification: not

e 1/0 status needed)

e Camera status (average

light level)

Page 18 of 38

D4.1 Demonst. 1, Configuration App

H2020-643924-EoT

REQO07 Take Take a picture with the Yes
photographs camera and send it over wifi
REQO0S Loop recording Re(_:ord 60 frames at 1 fpsin | Yes
at 1 fps a circular buffer
REQO09 Clrcu_lar buffer Freeze the circular buffer ves
freezing
Recording @ 25 | Record during the alarm Yes
REQO10 fps or 12 fps duration
Partially — no cloud
Send an alarm Send the alarm flag and server used, but
REQO11 alarm type to the cloud direct connection
to the cloud app .
server with the
companion device
Send the picture Partially — no cloud
Send the corresponding to the server used, but
REQO12 | picture of the . P 9 direct connection
triggering of the alarm to the .
alarm with the
cloud server . .
companion device
Partially — no cloud
. server used, but
REQO13 Send the pre- Send the circular buffer to direct connection
alarm buffer the cloud server .
with the
companion device
Partially — no cloud
server used, but
REQO014 Send the post Send the post alarm buffer to direct connection
alarm buffer the cloud server .
with the
companion device
Partially — no cloud
. . . server used, but
REQO15 \S/i((ejr;((j) the live Z((e)r;(; t‘:ahe live video to the direct connection
bp with the
companion device
e Transfer all buffers to the ves
Return to cloud server
REQO16 standby mode | * Clear buffers
e Resume circular buffer
recording

Page 19 of 38

D4.1 Demonst. 1, Configuration App

H2020-643924-EoT

Detect one or several objects | Yes, face detection
moving in front of the when a person is
REQ017 Presenpe camera. iCr;:rr]Z?; of the
detection Size of the objects to be
determined (1 person at 5
meters)
e Detection of a dark Yes
picture for more than 5
sec
o Detection of a partially
Tampering occulted picture for more
REQO18 | jetection than 5 sec
o Detection of a highly
blurred picture for more
than 5 sec
e Detect the presence of a ves
face with a width ranging
between x and y pixels
(tbd)
REQO019 | Face detection o Detect a face oriented
between + and — X
degrees horizontally (tbd)
e Detect a face oriented
between + and — X
degrees vertically (tbd)
Detect a face with a Yes
REQO20 | Face contrast minimum contrast of (10%)
of the full scale level (tbd)
Scene Operation with a minimum Not tested
REQO21 s illumination of 1 lux on the
IHlumination
scene
Face thumbnail | Extract a thumbnail image of | Yes (direct
REQO22 | extract and the face detected in the connection)
send picture to the cloud server
Upload face . No (optional
REQO023 | patterns to the Upload a list of known face scenario, not
module patterns implemented)

Page 20 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

. In case a facial match has No (optional
Send positive .
REQO24 | face recognition been detected, send the scenario, not
9 event, face thumbnail and ID | implemented)
event
to the cloud server
. . L No (optional
Start bi- Start audio communication (p_
REQO25 scenario, not
directional audio | with the module :
implemented)
Stop bi- Stop audio communication No (op_tlonal
REQO26 .) . . scenario, not
directional audio | with the module :
implemented)

7.2 Software description

The IFOYD app was developed in Java. At high level, it is composed of the main
module, called MainActivity.java, and the MQTT client, called MQTT_Client.java

The arborescence of the IFOYD project is as follows:

» | | peephole » m Arg.java Iil AppPage.java |A| CreateDialog.java
@ MainActivity.java |i| CameraPage.java |g FileDialog.java

@ MQTT_Client.java |i| ConfigPage.java |g FileDialogBtn.Java

o » |A| DetectionEve...ListPage.java |A| FolderDialog.java

5] sDCardDialog java

|i| FileSystemTr..deModel.Java |g SDCardFolderDialog.java
|i| FileSystenTre...odelcon.java
[3] GuIjava

Iil LivePage.java

|i| LeginPage.java

|i| Menu.java

|i| MenuAdapter.java

Iil MijpegView.java

Iil MQTTPage.java

[i] MQTTSubpagePublish.java
|i| MQTTSubpa...criptions.java
Iil SDCardPage.java

Iil SDCardSubp...ownload.java
|i| SDCardSubp...verview.java
|i| SDCardSubp...eUpload.java
Iil TimePage.java

Iil WiFiPage.java

Figure 13: Arborescence of the IFOYD project

All User Interfaces are located in the subfolder Ul. Modules corresponding to
each of the functions can be called through the interface.

The following table shows the list of the controls and the corresponding modules:

Page 21 of 38

D4.1 Demonst. 1, Configuration App

H2020-643924-EoT

Function/Control

Module

Main App MainActivity.java
Start page AppPage.java
MQTT client MQTT_Client.java
Configuration ConfigPage.java
Set Clock ConfigPage.java
Enable/Disable Live Video Streaming LivePage.java
Activate/Deactivate Face Detection ConfigPage.java

Live Detection Events

DetectionEventListPage.java

Request Event List

DetectionEventListPage.java

Response Detection List

DetectionEventListPage.java

Request: Frame of a Detected Event

DetectionEventListPage.java

Response: Frame of a Detected Event

DetectionEventListPage.java

Live Video Streaming

LivePage.java

SD Card management

SDCardPage.java

Page 22 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

8 IFOYD APP SOFTWARE DOCUMENTATION

The results of the different functions available from the IFOYD app are displayed
below.

8.1 Launching the IFOYD App

When the IFOYD app is launched, the following screen appears.

EH A BRGT Ll e2xM 22:36

In Front Of Your Door

Broker address:

Port:

DISCONNECT

Figure 14: Configuration screen after the launch of the app

The first task is to select the IP address of the EoT device, in our case,
198.168.0.81. The port is already configured on its actual value: 1883. Then the
user pushes the “CONNECT” button. If the connection is successful, the
“CONNECT” button becomes grey and turns inactive, meaning that the
connection is already active. Pushing the “DISCONNECT” button will stop the
connection. To come back to the main menu, the Android “RETURN” button has
to be used (bottom right below the screen).

No security feature has been developed at this stage. Security relies on access to
the Wifi access point of the EoT device which is protected by a password.
Additional security could be provided by hiding the ssid of the device.

Page 23 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

On the simulator side, the following messages are displayed:
LStest.tcl
2002
9003
9003

9863

Boee

peelee

Bee200

Bee300

Bee4ea

Beesee

000600
B0BCcE636c6T636b436T6eT4726T6CTD22

9003
2863
9ge3
3029

LT I VR FY R R R N R FE R

s

8.2 Main menu
The main page gives access to the different functionalities:

e Login gives access to the page seen in section 8.1

e Configuration gives access to clock setting, face detection ON and OFF
(see section 8.3)

¢ Camera gives access to the generated (see section 8.4)

e Live shows the live stream of the camera (see section 8.5)

e Detection Event List gives the last events with a picture of each event.
The recorded video can be downloaded and played back. (see section 8.6

)

3
=

A BT Ll 220 22:36

In Front Of Your Door

Figure 15: IFOYD main menu

The monitoring screen of the simulator keeps unchanged.

Page 24 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

Stest.tcl
2002
9863
9803
9063

9ge3
9003
9803
3829

Boee

Beelee

000200

pee3ee

Bee400

BeE500

000606
008c636c6TH36b436T6eT4726T6CTb22

LI S R PR R FE R PSR E I 8]

s

8.3 Configuration

The configuration page gives access to three functions:

SEND CLOCK will send the Smartphone time to the EoT device to setup
its clock. As the Android Smartphone synchronises its clock through the
network or using GPS, it can be considered as a reference.

START FACE DETECTION will launch the detection of faces by the EoT
device and the generation of cropped images.

STOP FACE DETECTION stop the continuous face detection process.

E A B AUT il s2%M 22:36

In Front Of Your Door

SEND CLOCK

START FACE DETECTION

STOP FACE DETECTION

Figure 16: Configuration page of the app

On the simulator side, the following commands are received to the SEND CLOCK
command:

Page 25 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

0x20 2 0000

0x30 800100
hel] 000200
ax9e 000300
0xs0 000400

gx90 000500

0x30 3 000600

@x30 41 0PBcH3I6c6THI6bA36T6RT4726T6CTD22
clockControl {"currentClock":1527626417}
currentClock 1527626417

The message corresponding to the START FACE DETECTION command is the
following:

3020 B§3B 32 0POb66616365436T6e74726T6cTD2263
faceControl {"command":"start"}

faceControl start

The message corresponding to the STOP FACE DETECTION command is the
following:

stream::one 1528060694537 5127

301f 0x30 31 098b66616365436T6e74726T6c7b2263
faceControl {"command":"stop"}

faceControl stop

stream::one 1528060694617 5617

1528060694697 5128

1528060694777 5156
1528060694857 5648
1528060694938 5633

8.4 Camera

The following screen appears when the CAMERA button is pressed.

Cropped images of the faces are sent by the EoT Device and displayed on the
screen.

At date of this report, a new version of the app is under development which will
keep a module listening to the broker as a background task and when a
notification is received, the corresponding image will be automatically displayed.

Note that the camera images in Figure 18, 19 and 20 have been generated
during a test of the Configuration App using the Simulator running as EoT
Device. It has been acquired using a standard webcam and is therefore not
representative of the image quality received by one of the cameras connected to
an EoT Device (Awaiba Camera, Sony Camera).

Page 26 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

E A BUTF gl sl 22:44

In Front Of Your Door

2018/05/29-22:44:40.523
face

Figure 17: Camera page of the app with cropped images of the collected
faces (Configuration app running with the EoT Simulator)

The message received by the simulator is the following
requestFrame {"eventId":212164,"type":"face","frameIndex":0}
reguestFrame 212164 @
303d 0x30 61 PBRCT26571756573744672616d657b22
requestFrame {"eventId":212165,"type":"face","frameIndex":0}
reguestFrame 212165 @
303d 0x30 61 000c726571756573744672616d657b22
requestFrame {"eventId":212166,"type":"face","frameIndex":8}
requestFrame 212166 0
303d 0x30 61 BOACT26571756573744672616d657b22
requestFrame {"eventId":212167,"type":"face","frameIndex":8}
requestFrame 212167 @
303d 0x30 61 POACT26571756573744672616d657b22
requestFrame {"eventId":212168,"type":"face","frameIndex":0}
regquestFrame 212168 @
303d 0x30 61 000c726571756573744672616d657b22
requestFrame {"eventId":212169,"type":"face","frameIndex":
requestFrame 212169 @

8.5 Live

The live video stream can be displayed (left) or stopped (right) using the
command above the video.

Page 27 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

= A B RUT 4 o1xl 22:45 H A R BGT gl souid 22:58

In Front Of Your Door In Front Of Your Door

Figure 18: Live page of the app with captured images (Configuration app
running with the EoT Simulator)

The commands received by the EoT Device are the following:
stream: :one 1528062287320 5112

3029 0x30 41 P015766964656T53747265616d696e67

videoStreamingControl {"command"”:"stop"}

302a 0x30 42 B015766964656T53747265616d696e67

videoStreamingControl {"command":"start"}

stream::one 1528062293121 5646

stream: :one 1528062293201 5599

stream::one 1528062293281 5648

stream::one 1528062293362 5108

stream::one 1528062293442 5122

stream::one 1528062293522 5145

stream::one 1528062293602 5632

stream::one 1528062293683 5649

3029 8x30 41 9015766964656T53747265616d696e67
videoStreamingControl {"command":"stop"}

8.6 Detection Event list

Page 28 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

When the DETECTION EVENT LIST button is pressed, the list of events
recorded in the EoT device is sent to the IFOYD app. A snapshot of each event is
sent with the event and displayed on the Smartphone. A specific event can be
selected and replayed. (left image).

Additional controls are available when a clip is replayed (right image) that allow
(from left to right):

back to beginning of the clip

one image back

play

one image forward

Go to the end of the clip and to the next clip.

AE B 4T al 79%8 22:49 A B RUT Ll 12l 2301

In Front Of Your Door In Front Of Your Door

K]

Figure 19: Detection Event List page with replay of stored videos
(Configuration app running with the EoT Simulator)

The message received on the simulator is the following:

reguestDetectionEventList {"timeStart":1527450152,"timeStop":15280854952}
reguestDetectionEventList 1527450152 1528054952

84 events

stream: :one 1528054952311 5173

stream: :one 1528054952404 5621

EED] 0x30 61 800c726571756573744672616d657b22

requestFrame {"eventId":212145,"type":"face","frameIndex":8}
requestFrame 212145 @

303d 0x30 61 @00c726571756573744672616d657b22

requestFrame {"eventId":212146,"type":"face","frameIndex":0}

requestFrame 212146 @

303d 0x30 61 866c726571756573744672616d657b22
requestFrame {"eventId":212147,"type":"face","frameIndex":@}
e goe £ 4]

Page 29 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

9 CONCLUSIONS

The IFOYD (In Front Of Your Door) Android App has been developed as part of
the peephole solution to control the EoT Device and to get alarms, video clips
and images from the device. The MQTT protocol used for the communication is
easy to implement and customised Apps could be easily developed using the
canvas provided by the demonstrator.

Page 30 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

Annex 1 : MQTT protocol

Page 31 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

EOT Board < IFOYD App Protocol

o Document History

Date Version-Type Editor Changes

15.05.2017 Initial Draft Stephan Krauf initial draft

16.05.2017 Updated draft Thierry Larmoire Added audio and video stream specification
17.05.2017 Updated draft Stephan Krauf3 Updated video stream specification

15.12.2017 Updated draft Thierry Larmoire Added record handling of detection events and video
31.01.2018 Updated draft Ruben Reiser Updated specification

22.05.2018 Final draft Stephan Krauf3 Fixed issues in examples and wording

Table of Contents

L. CONMrOl ..o iError! Marcador no definido.
ST O [T iError! Marcador no definido.
Enable/Disable Live Video Streaming.........ccoeevvueevevneeennnnnn. iError! Marcador no definido.
Activate/Deactivate Face Detectionc.cccevevevviviviieiinnns iError! Marcador no definido.

2. Detection EVENLSccuuiiiiiiiieieeeee e iError! Marcador no definido.
Live Detection EVENLScivviiiiieieeee e iError! Marcador no definido.
Request EVENE LiSt........ocovuiiiiieeeeeeeeeeee e iError! Marcador no definido.
Response Detection LiSt.........ovviviiieiiiiiiiieiieeeeeee e iError! Marcador no definido.

3. VideO Stre@ming.....ccceeeeeeeeeeiiiiaaeeeeeeeeeiiee e iError! Marcador no definido.
Request: Frame of a Detected Event.......ccooevvvivviinniinniennnen, iError! Marcador no definido.
Response: Frame of a Detected Eventc.coocevvvvieiiinnnnnns iError! Marcador no definido.
Live VIideo Streaming........cooeeevneeeieeiieeeieeeeieeeeeeee e iError! Marcador no definido.

Page 32 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

1.Control

° Set Clock

Publisher:
[FOYD App

Topic:
clockControl

Message Payload:
currentClock (integer 32bit) seconds since 1 Jan 1970

Message Format:
JSON

Example:

{
"currentClock™: 1480082281

}

o Enable/Disable Live Video Streaming

Publisher:
IFOYD App

Topic:
videoStreamingControl

Message Payload:
command (string) streaming control command: "'start”,”stop”

Message Format:
JSON

Example:

{

"command": "start"

}

Note:
All detections are disabled if video streaming is enabled.

Page 33 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

° Activate/Deactivate Face Detection

Publisher:
I[FOYD App

Topic:
faceControl

Message Payload:
command (string) face detection command: ''start”,”stop”

Message Format:
JSON

Example:

{

"command": "start"

}

Note:
e Motion-/Tampering- detection is disabled if face detection is active.

e Motion-/Tampering- detection is enabled if face detection is inactivate.
e Default: Motion-/Tampering- detection is enabled.

Page 34 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

2.Detection Events

° Live Detection Events

Publisher:
EOT Board

Topic:
detectionEvent

Message Payload:
eventld (integer 32bit) event identifier
type (string) the type of event (motion, person, face,
tampering)
timestamp (integer 64bit) milliseconds since 1 Jan 1970

Message Format:

JSON
Example:
{
"eventld": 7,
"type": "face",
"timestamp": 1480082281234
}

o Request Event List

Publisher:
IFOYD App

Topic:
requestDetectionEventList

Message Payload:
timeStart (integer 32bit) seconds since 1 Jan 1970, query slice
start (included)
timeStop (integer 32bit) seconds since 1 Jan 1970, query slice
stop (excluded)

Message Format:

JSON
Example:
{
"timeStart": 1480082280
"timeStop": 1480082291
}

Page 35 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

o Response Detection List

Publisher:
EOT Board

Topic:
responseDetectionEventList

Message Payload:
events (tablearray)

e eventld (integer 32bit) event identifier

e type (string) the type of event (motion, face, tampering)
o fTps (integer 32bit) frame rate of the sequence

e countFrames (integer 32bit) number of frames

e timeStart (integer 64bit) milliseconds since 1 Jan 1970

e timeStop (integer 64bit) milliseconds since 1 Jan 1970

Message Format:
JSON

Example:

{

"events":[
{

"eventld™": 7,
"type": "face",
"fps":15,
"countFrames": 300,
"timeStart": 1480082281234,
"timeStop": 1480082291234

"eventld": 8,

"type": "tampering”,
"fps":30,

"countFrames": 100,
"timeStart": 1480082281234,
"timeStop": 1480082285000

Page 36 of 38

D4.1 Demonst. 1, Configuration App H2020-643924-E0T

3. Video Streaming

o Request: Frame of a Detected Event

Publisher:
[FOYD App

Topic:
requestFrame

Message Payload:
eventld (integer 32bit) event identifier
type (string) the type of event (motion, face, tampering)
framelndex (integer 32bit) select frame of the sequence

Message Format:

JSON
Example:
{
"eventld": 7,
"type": "face",
"framelndex": 0
}

o Response: Frame of a Detected Event

Publisher:
EOT Board

Topic:
responseFrame

Message Payload:
image (binary) JPEG encoded image

Message Format:
BINARY

Example:
FF D8 FF EO 00 10 4A 46 49 46 ...

Note:
Returns an empty message if no image was found.

Page 37 of 38

D4.1 Demonst. 1, Configuration App

o Live Video Streaming

Publisher:
EOT Board

Topic:
videoStream

Message Payload:
image (binary) JPEG encoded image

Message Format:
BINARY

Example:
FF D8 FF EO 00 10 4A 46 49 46 ...

Note:
Messages (frames) are sent if the video streaming is enabled.

- End of document -

Page 38 of 38

H2020-643924-EoT

	1 Document Information
	2 Document History
	3 Abstract
	4 Table of Contents
	5 Introduction
	6 Short description of the demonstrator
	6.1 Description of the use-cases
	6.2 Description of the parts used for the development
	6.3 Software Architecture
	6.3.1 EoT device
	6.3.2 Android App: IFOYD
	6.3.3 EoT device simulator

	6.4 Hardware set-up
	6.4.1 EoT device configuration
	6.4.2 Android Smartphone configuration
	6.4.3 Simulator configuration

	7 IFOYD App Software Description
	7.1 Demonstrator requirements
	7.2 Software description

	8 IFOYD App Software Documentation
	8.1 Launching the IFOYD App
	8.2 Main menu
	8.3 Configuration
	8.4 Camera
	8.5 Live
	8.6 Detection Event list

	9 Conclusions
	 Document History

	Table of Contents
	1. Control
	 Set Clock
	 Enable/Disable Live Video Streaming
	 Activate/Deactivate Face Detection

	2. Detection Events
	 Live Detection Events
	 Request Event List
	 Response Detection List

	3. Video Streaming
	 Request: Frame of a Detected Event
	 Response: Frame of a Detected Event
	 Live Video Streaming

