
Horizon 2020 PROGRAMME ICT-01-2014: Smart Cyber-Physical Systems

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No 643924

D4.1
Demonstrator 1,
Configuration App

Copyright © 2018 The EoT Consortium

The opinions of the authors expressed in this document do not necessarily reflect
the official opinion of EOT partners or of the European Commission.

1 DOCUMENT INFORMATION

Authors T. Larmoire (THALES)

C. Fedorczak (THALES)
A. Pagani (DFKI)

Responsible Author Alain Pagani

e-mail: alain.pagani@dfki.de

Keywords Demonstrator 1 – Peephole demonstrator

WP/Task WP4

Nature Internal document

Dissemination Level PU

mailto:alain.pagani@dfki.de

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 3 of 38

2 DOCUMENT HISTORY

Person Date Comment Version

Alain Pagani 06.06.2018 Delivered version 1.0

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 4 of 38

3 ABSTRACT

This document is a software description document that accompanies the
deliverable D4.2 “Peephole Demonstrator Configuration App”. This deliverable is
the software developed on the companion device (here a smartphone running
Android) in order to implement the Peephole surveillance demonstrator. The
software is made available to the reviewers on a GitLab server. This document
first provides a short description of the demonstrator and its features. It then
describes the developed software that runs on the companion device.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 5 of 38

4 TABLE OF CONTENTS

1 Document Information .. 2
2 Document History ... 3
3 Abstract .. 4
4 Table of Contents ... 5
5 Introduction ... 6
6 Short description of the demonstrator ... 7

6.1 Description of the use-cases ... 7
6.2 Description of the parts used for the development 9
6.3 Software Architecture .. 10
6.4 Hardware set-up ... 13

7 IFOYD App Software Description ... 18
7.1 Demonstrator requirements .. 18
7.2 Software description .. 21

8 IFOYD App Software Documentation ... 23
8.1 Launching the IFOYD App ... 23
8.2 Main menu ... 24
8.3 Configuration .. 25
8.4 Camera .. 26
8.5 Live ... 27
8.6 Detection Event list ... 28

9 Conclusions .. 30

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 6 of 38

5 INTRODUCTION

The initial specification of the peephole requirements was started in April 2015
and was finalised in 2016. It continued to be refined in parallel to the progress of
the hardware design (WP2) and the middleware design (WP3). It describes the
different use cases associated with the peephole demonstration.
The requirements for the peephole demonstrator have been chosen to fulfil
common needs in the security market but also to test features of increasing
complexity in terms of processing power for the EoT device, in order to evaluate
the limits achievable in terms of edge processing.

The demonstrator is composed of the EoT device running the application
software, developed by DFKI, and the Android Smartphone with the IFOYD
(In Front Of Your Door) app, developed by Thales. This document describes
the configuration application software developed for the Android device.

As an additional task, an EoT device simulator running on a laptop has been
developed by Thales in order to start the development of the App while the EoT
device was still in development. This software is also described briefly.

The App software has been stored in the Gitlab repository:

https://gitlab.com/espiaran/EoT/tree/peephole/WorkPackage_4/Peephole/androi
d

The reviewers will be able to access the private parts of the code on request.

Figure 1 - EoT and IFOYD App development

https://gitlab.com/espiaran/EoT/tree/peephole/WorkPackage_4/Peephole/android
https://gitlab.com/espiaran/EoT/tree/peephole/WorkPackage_4/Peephole/android

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 7 of 38

6 SHORT DESCRIPTION OF THE DEMONSTRATOR

The Peephole demonstrator is composed of an EoT device and an Android Smart
Phone with a dedicated App to exchange commands and data with the device.

Figure 2 - Peephole demonstrator

After power on, the EoT device connects to the network using its Wi-Fi
connection.
The Android phone has to connect to the device through the network to be able
to control it and receive data and alarms from it.
The EoT device holds an MQTT broker that will manage the exchanges with the
Android phone. Several Android phones can be connected simultaneously to the
device and get alarms, images and video clips from the device.

The Android App that has been developed and that will be described in this
document is a functional prototype that gives access to the features of the EoT
peephole device. No effort was spent on the aesthetic aspect of the different
screens, as they are likely to be customised.

The interface specifications have been elaborated by DFKI and THALES based on
the general software architecture and the use of the PULGA broker.

A document called EOTMQTTProtocol_Vx has been created by DFKI in May
2017 and has been upgraded since then by DFKI and Thales. The last version of
the document is currently V5 and has been release on May 22, 2018. This
document is provided as an annex.

6.1 Description of the use-cases

The peephole demonstrator has been developed by DFKI and Thales according to
the requirements produced for WP2 and WP3.
To verify the completion of the requirements, five use cases have been selected:

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 8 of 38

a. Surveillance:
The device is
continuously recording
in a circular buffer and
alarm is sent on motion
detection. Live view is
available on demand.

b. Tampering detection:

An alarm is sent in case
of a failure or a
tampering is detected.

c. Face detection
Faces are detected and
cropped images of the
faces are recorded and
transmitted

d. Face recognition (optional)

Detected faces are
compared to a white list
stored in the EoT device,
and when a match occurs,
an event is generated.

e. Bi-directional audio transmission (optional)

A bidirectional audio link
is created between the
EoT device and the
Android Smartphone

The original requirement analysis document mentioned marked two scenarios as
optional: Scenario 4: Face recognition, and Scenario 5: Bi-directional audio
transmission. These two scenarios were optional and were to be implemented
only after the successful implementation of the first three scenarios. After the
development of the three first scenarios, the allocated budget was already
consumed, and the optional scenarios have not been implemented.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 9 of 38

6.2 Description of the parts used for the development

The demonstrator implemented is composed of:

i. A Smartphone with the IFOYD App.

Figure 3: A view of the IFOYD app on the selected Smartphone

The Smartphone used for the test is a Samsung Galaxy 4, Model GT-19505. The
Android version installed on the Smartphone is Android 5.01 (Lollipop). The
IFOYD App has been developed in JAVA using Android SDK.

ii. A Wi-Fi access point:

Figure 4: Typical router for the Wi-Fi connection

A standard Wi-Fi access point is used in order to allow connection of the EoT
device and the Smartphone.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 10 of 38

iii. The EoT device:

Figure 5: Early version of the EoT Device (R1)

The development has been done using the different releases of the EoT device.

iv. A laptop for the development

Figure 6: Laptop used for development

Thales does most of the developments on Linux (CentOS or Ubuntu). The EoT
App has been developed using Eclipse IDE under Ubuntu environment.

An EoT device simulator has also been developed running on that PC in order to
develop and debug more easily the Android App. This simulator will be described
below.

6.3 Software Architecture

6.3.1 EoT device

The software architecture for the EoT Device is described in a dedicated
document (Deliverable D4.1).
It is mainly composed of an application software and a communication module in
the form of an MQTT broker. This broker uses the PULGA library derived from the
MOSQUITTO implementation.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 11 of 38

Figure 7: Architecture of the EoT Device Software

The connection is then established using the WiFi_Functions library.

6.3.2 Android App: IFOYD

This Application has been developed in JAVA using Eclipse and the Android SDK.
Elementary commands have been defined for the dialog between the EoT device
and the IFOYD App. They are described in the document:
EOTMQTTProtocol_v5.docx dated 22/05/2018, available in Annex.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 12 of 38

Figure 8: Architecutre of the android app

The app is using a Java MQTT Client library available in the Eclipse environment.
The main application is organised in different modules corresponding to the
elementary tasks needed for the communication with the EoT Device.

The IFOYD App is compiled to an .apk file that can be directly installed on the
Smartphone, once downloaded or copied in its memory.
The App installation process is standard and doesn’t require any specific
parameters.
An icon for the IFOYD app is created on the Applications pages and can be added
to one of the access screens.

Figure 9: Icon of the IFOYD app on the main screen

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 13 of 38

6.3.3 EoT device simulator

The EoT device simulator has been developed on a laptop under Ubuntu and tcl
programming language.

Figure 10: Architecture of the EoT Device Simulator

Two main applications have been developed:

• test.tcl which is the application programme that simulates the EoT device,
responds to the commands sent by the IFOYD app and generates some
events.

• mqtt.tcl which is an MQTT client. This module is launched directly by the
test.tcl programme.

The simulator also uses the MOSQUITTO process as an OS service. Ubuntu has
been configured to launch MOSQUITTO at boot.

This simulator uses some images and video sequences stored in the hard disk in
order to simulate the different functions and provides a terminal to display the
messages received from the Android app as well as the responses.
This simulator has proven very useful as separate teams located on different
sites and sharing different networks did the development of the EoT device
software and the Android app.

6.4 Hardware set-up

6.4.1 EoT device configuration

During the initial configuration of the EoT Device, it is necessary to configure the
IP address of the device. This is done using the bootloader and the software
Pulga for a first configuration step. The IP address of the device is configured by
default to 192.168.1.1 and the broker can be accessed on port 1883.

A change of the IP address and the broker port will be possible from the Android
device. This will need the “config” switch located on the EoT board to be pressed
for a least 3 sec. The EoT board will switch to configuration mode. Using the

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 14 of 38

Configuration menu, the Android App will allow changing the IP address and the
broker port. This change will be effective when the “Apply” button of the App will
be pushed.
At the date of the report, this configuration is still in development.

6.4.2 Android Smartphone configuration

The Android Smartphone running the IFOYD app needs to be connected using its
Wi-Fi connection to the EoT device’ WiFi access point.
This is done directly in the settings of the phone. DHCP can be used as the EoT
device supports this feature.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 15 of 38

Once connected to the Wi-Fi, the IFOYD app can be launched. The first screen
shows the different tasks that can be accessed.

Figure 11: First screen with the different tasks

The focus is given on the login menu. As long as the connection hasn’t been
initialised with the EoT Device, the other menus cannot be accessed.

Once the “Login” button has been activated, a new page appears asking for the
EoT Device IP address (in fact the MQTT broker address).

The initial value for the broker has been defined to be 192.168.0.8. If the device
is not using this address, it can be edited directly on the address window.

The MQTT port is initialised by default to 1883 as TCP/IP port 1883 is reserved
with IANA for use with MQTT. TCP/IP port 8883 is also registered, for using MQTT
over SSL.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 16 of 38

Figure 12: Configuration of the IP address and port

In the current version, the broker is embedded inside the device.

6.4.3 Simulator configuration

The laptop, running the simulator, needs to be connected to the same network
as the EoT Device, with access to the same segment. This connection is usually
done in Wi-Fi, but an Ethernet wired connection could also be used as the Wi-Fi
access point used for the Android Smartphone can be accessed.

By default, the MOSQUITTO service is launched at boot if Upstart is installed (by
default on Ubuntu).
The initialisation file “mosquitto.conf” is located in the /etc/init folder and
contains the MOSQUITTO setup. The default .conf file, provided with the
MOSQUITTO package, has been used.

The next step is to move to the simulator folder and to launch the ./test.tcl
programme.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 17 of 38

The terminal will display:

cfe@cfe-HP-ProBook-640-G1 /data/eot/EoT-peephole/WorkPackage_4/Peephole/android $
./test.tcl
2002 0x20 2 0000
9003 0x90 3 000100
9003 0x90 3 000200
9003 0x90 3 000300
9003 0x90 3 000400
9003 0x90 3 000500
9003 0x90 3 000600

The simulator is now ready to respond to commands sent by the IFOYD app.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 18 of 38

7 IFOYD APP SOFTWARE DESCRIPTION

In this section, we will describe first the requirements of the demonstrator. Then
we will describe the software, in the configuration where the IFOYD app is
connected to the simulator as it allows monitoring the messages exchanged.

7.1 Demonstrator requirements

A requirements analysis has been conducted for all demonstrators in the first
phase of the project. The result of the analysis has been documented in a report
that has been submitted as an annex for the mid-term review (“Annex 2”).

For the Peephole Surveillance demonstrator, the following requirements have
been identified. In the following table, we provide the name of each requirement,
and indicate if this requirement has been covered by the implementation or not.
In case the requirement was not implemented, we justify the modification of the
development plan in the last column.

ID Name Description Achieved

REQ001 Connect to WiFi
hot spot

Connection to the local
network/Internet

Yes, Broker on the
EoT device

REQ002
Connect to the
PC or
Smatphone app

Connection to the app
Yes

REQ003 Module set-up Set cloud address, login,
password, application

Yes

REQ004 Start operation Start the app on the module Yes

REQ005 Stop operation Stop the app on the module Yes

REQ006 Status

Send the module status:

• Active /Standby
• Event detected or not
• Last events
• Memory used/remaining
• Battery level
• I/O status
• Camera status (average

light level)

Partially (Not
implemented:
Memory used,
battery level,
camera status –
justification: not
needed)

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 19 of 38

REQ007 Take
photographs

Take a picture with the
camera and send it over wifi

Yes

REQ008 Loop recording
at 1 fps

Record 60 frames at 1 fps in
a circular buffer

Yes

REQ009 Circular buffer
freezing Freeze the circular buffer Yes

REQ010 Recording @ 25
fps or 12 fps

Record during the alarm
duration

Yes

REQ011 Send an alarm
to the cloud app

Send the alarm flag and
alarm type to the cloud
server

Partially – no cloud
server used, but
direct connection
with the
companion device

REQ012
Send the
picture of the
alarm

Send the picture
corresponding to the
triggering of the alarm to the
cloud server

Partially – no cloud
server used, but
direct connection
with the
companion device

REQ013 Send the pre-
alarm buffer

Send the circular buffer to
the cloud server

Partially – no cloud
server used, but
direct connection
with the
companion device

REQ014 Send the post
alarm buffer

Send the post alarm buffer to
the cloud server

Partially – no cloud
server used, but
direct connection
with the
companion device

REQ015 Send the live
video

Send the live video to the
cloud app

Partially – no cloud
server used, but
direct connection
with the
companion device

REQ016 Return to
standby mode

• Transfer all buffers to the
cloud server

• Clear buffers
• Resume circular buffer

recording

Yes

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 20 of 38

REQ017 Presence
detection

Detect one or several objects
moving in front of the
camera.

Size of the objects to be
determined (1 person at 5
meters)

Yes, face detection
when a person is
in front of the
camera

REQ018 Tampering
detection

• Detection of a dark
picture for more than 5
sec

• Detection of a partially
occulted picture for more
than 5 sec

• Detection of a highly
blurred picture for more
than 5 sec

Yes

REQ019 Face detection

• Detect the presence of a
face with a width ranging
between x and y pixels
(tbd)

• Detect a face oriented
between + and – X
degrees horizontally (tbd)

• Detect a face oriented
between + and – X
degrees vertically (tbd)

Yes

REQ020 Face contrast
Detect a face with a
minimum contrast of (10%)
of the full scale level (tbd)

Yes

REQ021 Scene
Illumination

Operation with a minimum
illumination of 1 lux on the
scene

Not tested

REQ022
Face thumbnail
extract and
send

Extract a thumbnail image of
the face detected in the
picture to the cloud server

Yes (direct
connection)

REQ023
Upload face
patterns to the
module

Upload a list of known face
patterns

No (optional
scenario, not
implemented)

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 21 of 38

REQ024
Send positive
face recognition
event

In case a facial match has
been detected, send the
event, face thumbnail and ID
to the cloud server

No (optional
scenario, not
implemented)

REQ025 Start bi-
directional audio

Start audio communication
with the module

No (optional
scenario, not
implemented)

REQ026 Stop bi-
directional audio

Stop audio communication
with the module

No (optional
scenario, not
implemented)

7.2 Software description

The IFOYD app was developed in Java. At high level, it is composed of the main
module, called MainActivity.java, and the MQTT client, called MQTT_Client.java

The arborescence of the IFOYD project is as follows:

Figure 13: Arborescence of the IFOYD project

All User Interfaces are located in the subfolder UI. Modules corresponding to
each of the functions can be called through the interface.

The following table shows the list of the controls and the corresponding modules:

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 22 of 38

Function/Control Module

Main App MainActivity.java
Start page AppPage.java
MQTT client MQTT_Client.java
Configuration ConfigPage.java

Set Clock ConfigPage.java
Enable/Disable Live Video Streaming LivePage.java
Activate/Deactivate Face Detection ConfigPage.java
Live Detection Events DetectionEventListPage.java
Request Event List DetectionEventListPage.java
Response Detection List DetectionEventListPage.java
Request: Frame of a Detected Event DetectionEventListPage.java
Response: Frame of a Detected Event DetectionEventListPage.java
Live Video Streaming LivePage.java
SD Card management SDCardPage.java

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 23 of 38

8 IFOYD APP SOFTWARE DOCUMENTATION

The results of the different functions available from the IFOYD app are displayed
below.

8.1 Launching the IFOYD App

When the IFOYD app is launched, the following screen appears.

Figure 14: Configuration screen after the launch of the app

The first task is to select the IP address of the EoT device, in our case,
198.168.0.81. The port is already configured on its actual value: 1883. Then the
user pushes the “CONNECT” button. If the connection is successful, the
“CONNECT” button becomes grey and turns inactive, meaning that the
connection is already active. Pushing the “DISCONNECT” button will stop the
connection. To come back to the main menu, the Android “RETURN” button has
to be used (bottom right below the screen).
No security feature has been developed at this stage. Security relies on access to
the Wifi access point of the EoT device which is protected by a password.
Additional security could be provided by hiding the ssid of the device.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 24 of 38

On the simulator side, the following messages are displayed:

8.2 Main menu

The main page gives access to the different functionalities:

• Login gives access to the page seen in section 8.1
• Configuration gives access to clock setting, face detection ON and OFF

(see section 8.3)
• Camera gives access to the generated (see section 8.4)
• Live shows the live stream of the camera (see section 8.5)
• Detection Event List gives the last events with a picture of each event.

The recorded video can be downloaded and played back. (see section 8.6
)

Figure 15: IFOYD main menu

The monitoring screen of the simulator keeps unchanged.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 25 of 38

8.3 Configuration

The configuration page gives access to three functions:

• SEND CLOCK will send the Smartphone time to the EoT device to setup
its clock. As the Android Smartphone synchronises its clock through the
network or using GPS, it can be considered as a reference.

• START FACE DETECTION will launch the detection of faces by the EoT
device and the generation of cropped images.

• STOP FACE DETECTION stop the continuous face detection process.

Figure 16: Configuration page of the app

On the simulator side, the following commands are received to the SEND CLOCK
command:

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 26 of 38

The message corresponding to the START FACE DETECTION command is the
following:

The message corresponding to the STOP FACE DETECTION command is the
following:

8.4 Camera

The following screen appears when the CAMERA button is pressed.
Cropped images of the faces are sent by the EoT Device and displayed on the
screen.
At date of this report, a new version of the app is under development which will
keep a module listening to the broker as a background task and when a
notification is received, the corresponding image will be automatically displayed.

Note that the camera images in Figure 18, 19 and 20 have been generated
during a test of the Configuration App using the Simulator running as EoT
Device. It has been acquired using a standard webcam and is therefore not
representative of the image quality received by one of the cameras connected to
an EoT Device (Awaiba Camera, Sony Camera).

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 27 of 38

Figure 17: Camera page of the app with cropped images of the collected
faces (Configuration app running with the EoT Simulator)

The message received by the simulator is the following:

8.5 Live

The live video stream can be displayed (left) or stopped (right) using the
command above the video.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 28 of 38

Figure 18: Live page of the app with captured images (Configuration app

running with the EoT Simulator)

The commands received by the EoT Device are the following:

8.6 Detection Event list

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 29 of 38

When the DETECTION EVENT LIST button is pressed, the list of events
recorded in the EoT device is sent to the IFOYD app. A snapshot of each event is
sent with the event and displayed on the Smartphone. A specific event can be
selected and replayed. (left image).

Additional controls are available when a clip is replayed (right image) that allow
(from left to right):

• back to beginning of the clip
• one image back
• play
• one image forward
• Go to the end of the clip and to the next clip.

Figure 19: Detection Event List page with replay of stored videos

(Configuration app running with the EoT Simulator)

The message received on the simulator is the following:

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 30 of 38

9 CONCLUSIONS

The IFOYD (In Front Of Your Door) Android App has been developed as part of
the peephole solution to control the EoT Device and to get alarms, video clips
and images from the device. The MQTT protocol used for the communication is
easy to implement and customised Apps could be easily developed using the
canvas provided by the demonstrator.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 31 of 38

Annex 1 : MQTT protocol

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 32 of 38

EOT Board ↔ IFOYD App Protocol
• Document History
Date Version-Type Editor Changes

15.05.2017 Initial Draft Stephan Krauß initial draft

16.05.2017 Updated draft Thierry Larmoire Added audio and video stream specification

17.05.2017 Updated draft Stephan Krauß Updated video stream specification

15.12.2017 Updated draft Thierry Larmoire Added record handling of detection events and video

31.01.2018 Updated draft Ruben Reiser Updated specification

22.05.2018 Final draft Stephan Krauß Fixed issues in examples and wording

Table of Contents
1. Control .. ¡Error! Marcador no definido.

Set Clock .. ¡Error! Marcador no definido.
Enable/Disable Live Video Streaming ¡Error! Marcador no definido.
Activate/Deactivate Face Detection ¡Error! Marcador no definido.

2. Detection Events ... ¡Error! Marcador no definido.
Live Detection Events ... ¡Error! Marcador no definido.
Request Event List .. ¡Error! Marcador no definido.
Response Detection List ... ¡Error! Marcador no definido.

3. Video Streaming .. ¡Error! Marcador no definido.
Request: Frame of a Detected Event ¡Error! Marcador no definido.
Response: Frame of a Detected Event ¡Error! Marcador no definido.
Live Video Streaming .. ¡Error! Marcador no definido.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 33 of 38

1. Control

• Set Clock
Publisher:

IFOYD App

Topic:
clockControl

Message Payload:
currentClock (integer 32bit) seconds since 1 Jan 1970

Message Format:
JSON

Example:
{
 "currentClock": 1480082281
}

• Enable/Disable Live Video Streaming
Publisher:

IFOYD App

Topic:
videoStreamingControl

Message Payload:
command (string) streaming control command: "start”,”stop”

Message Format:
JSON

Example:
{
 "command": "start"
}

Note:
All detections are disabled if video streaming is enabled.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 34 of 38

• Activate/Deactivate Face Detection
Publisher:

IFOYD App

Topic:
faceControl

Message Payload:
command (string) face detection command: "start”,”stop”

Message Format:
JSON

Example:
{
 "command": "start"
}

Note:
• Motion-/Tampering- detection is disabled if face detection is active.
• Motion-/Tampering- detection is enabled if face detection is inactivate.
• Default: Motion-/Tampering- detection is enabled.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 35 of 38

2. Detection Events

• Live Detection Events
Publisher:

EOT Board

Topic:
detectionEvent

Message Payload:
eventId (integer 32bit) event identifier
type (string) the type of event (motion, person, face,

tampering)
timestamp (integer 64bit) milliseconds since 1 Jan 1970

Message Format:
JSON

Example:
{
 "eventId": 7,
 "type": "face",
 "timestamp": 1480082281234
}

• Request Event List
Publisher:

IFOYD App

Topic:
requestDetectionEventList

Message Payload:
timeStart (integer 32bit) seconds since 1 Jan 1970, query slice

start (included)
timeStop (integer 32bit) seconds since 1 Jan 1970, query slice

stop (excluded)

Message Format:
JSON

Example:
{
 "timeStart": 1480082280
 "timeStop": 1480082291
}

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 36 of 38

• Response Detection List
Publisher:

EOT Board

Topic:
responseDetectionEventList

Message Payload:
events (tablearray)

• eventId (integer 32bit) event identifier

• type (string) the type of event (motion, face, tampering)

• fps (integer 32bit) frame rate of the sequence

• countFrames (integer 32bit) number of frames

• timeStart (integer 64bit) milliseconds since 1 Jan 1970

• timeStop (integer 64bit) milliseconds since 1 Jan 1970

Message Format:
JSON

Example:
{
 "events":[
 {
 "eventId": 7,
 "type": "face",
 "fps":15,
 "countFrames": 300,
 "timeStart": 1480082281234,
 "timeStop": 1480082291234
 },
 {
 "eventId": 8,
 "type": "tampering",
 "fps":30,
 "countFrames": 100,
 "timeStart": 1480082281234,
 "timeStop": 1480082285000
 }
]
}

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 37 of 38

3. Video Streaming

• Request: Frame of a Detected Event
Publisher:

IFOYD App

Topic:
requestFrame

Message Payload:
eventId (integer 32bit) event identifier
type (string) the type of event (motion, face, tampering)
frameIndex (integer 32bit) select frame of the sequence

Message Format:
JSON

Example:
{
 "eventId": 7,
 "type": "face",
 "frameIndex": 0
}

• Response: Frame of a Detected Event
Publisher:

EOT Board

Topic:
responseFrame

Message Payload:
image (binary) JPEG encoded image

Message Format:
BINARY

Example:
FF D8 FF E0 00 10 4A 46 49 46 …

Note:
Returns an empty message if no image was found.

D4.1 Demonst. 1, Configuration App H2020-643924-EoT

Page 38 of 38

• Live Video Streaming
Publisher:

EOT Board

Topic:
videoStream

Message Payload:
image (binary) JPEG encoded image

Message Format:
BINARY

Example:
FF D8 FF E0 00 10 4A 46 49 46 …

Note:
Messages (frames) are sent if the video streaming is enabled.

- End of document -

	1 Document Information
	2 Document History
	3 Abstract
	4 Table of Contents
	5 Introduction
	6 Short description of the demonstrator
	6.1 Description of the use-cases
	6.2 Description of the parts used for the development
	6.3 Software Architecture
	6.3.1 EoT device
	6.3.2 Android App: IFOYD
	6.3.3 EoT device simulator

	6.4 Hardware set-up
	6.4.1 EoT device configuration
	6.4.2 Android Smartphone configuration
	6.4.3 Simulator configuration

	7 IFOYD App Software Description
	7.1 Demonstrator requirements
	7.2 Software description

	8 IFOYD App Software Documentation
	8.1 Launching the IFOYD App
	8.2 Main menu
	8.3 Configuration
	8.4 Camera
	8.5 Live
	8.6 Detection Event list

	9 Conclusions
	 Document History

	Table of Contents
	1. Control
	 Set Clock
	 Enable/Disable Live Video Streaming
	 Activate/Deactivate Face Detection

	2. Detection Events
	 Live Detection Events
	 Request Event List
	 Response Detection List

	3. Video Streaming
	 Request: Frame of a Detected Event
	 Response: Frame of a Detected Event
	 Live Video Streaming

