
Horizon 2020 PROGRAMME ICT-01-2014: Smart Cyber-Physical Systems

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No 643924

D4.1
Demonstrator 1,
EoT Application

Copyright © 2018 The EoT Consortium

The opinions of the authors expressed in this document do not necessarily reflect
the official opinion of EOT partners or the European Commission.

1. DOCUMENT INFORMATION

Authors C. Fedorczak (THALES)

T. Larmoire (THALES)
Stephan Krauß (DFKI)
Alain Pagani (DFKI)

Responsible Author Alain Pagani (DFKI)

e-mail: alain.pagani@dfki.de

Keywords Demonstrator 1 – Peephole Surveillance

WP/Task WP4

Nature Other

Dissemination Level PU

mailto:alain.pagani@dfki.de

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 3 of 20

2. DOCUMENT HISTORY

Person Date Comment Version

Alain Pagani 06.06.2018 Delivered version 1.0

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 4 of 20

3. ABSTRACT

This document is a software description document that accompanies the
deliverable D4.1 “Peephole Demonstrator EoT Application”. This deliverable is the
software developed on the EoT Board in order to implement the Peephole
surveillance demonstrator. The software is made available to the reviewers on a
GitLab server. This document first provides a short description of the
demonstrator and its features. It then describes the developed software that
runs on the EoT board. The interface of this software is finally documented, with
a list of all structures and functions available.

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 5 of 20

4. TABLE OF CONTENTS

1. Document Information .. 2
2. Document History ... 3
3. Abstract .. 4
4. Table of Contents ... 5
5. Introduction ... 6
6. Short description of the demonstrator ... 7
7. EoT Application Software Description .. 9

7.1. Demonstrator requirements ... 9
7.2. Software architecture .. 12
7.3. Camera and ISP .. 12
7.4. Event detection... 13
7.5. Event Recording.. 13
7.6. Network communication .. 13
7.7. Application logic .. 13

8. EoT Application Software Documentation ... 14
8.1. EoT libraries used ... 14
8.2. Camera and ISP .. 14
8.3. Event detection... 15
8.4. Event recording: Recording.hpp .. 16
8.5. Network communication .. 18

9. Conclusions ... 20

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 6 of 20

5. INTRODUCTION

This document describes the software for the Peephole Surveillance
demonstrator running on the EoT device. The Peephole Surveillance
demonstrator is one of the possible uses of the EoT device, where the device is
placed on the exterior part of the main door of an apartment or house. The
software loaded in the EoT device performs an image analysis task and is able to
detect if someone appears in front of the door. When such an event happens, a
notification is sent to a companion device (smartphone or tablet).

The code is available in GitLab at the following address:

https://gitlab.com/espiaran/EoT/tree/DFKI/WorkPackage_4/Peephole

The reviewers will be able to access the private parts of the code on request.

https://gitlab.com/espiaran/EoT/tree/DFKI/WorkPackage_4/Peephole

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 7 of 20

6. SHORT DESCRIPTION OF THE DEMONSTRATOR

The demonstrator described in this document is a peephole surveillance system.
Before leaving home, the user attaches the EoT-based device to the peephole
and configures it through a smartphone app (see Figure 1). The device will
continuously monitor for motion or faces in front of the door, sending alarms and
pictures to the user’s smartphone. The device does not need cables, since it
functions with its own rechargeable battery. Furthermore, the device will also
detect tampering events (e.g. attempts to cover the peephole) and generate
alarms. Besides these instant alarms/notifications the devices also records video
clips of the detected events and send them to the user on demand.

Figure 1: Setup of the peephole surveillance demonstrator.

Scenario 1: Surveillance
Once activated, the system monitors for activity (motion) at the door. If it
detects some, the system starts recording at 30 frames per second and sends a
motion alert to the user. The recording is sent to the user upon request. After
some time without activity, the system stops recording.

Scenario 2: Tampering detection
This scenario is an extension of scenario 1, where a presence has already been
detected and the user informed through a first alarm on the smartphone. Now
the person in front of the door covers the peephole either blocking light
completely or blurring the view significantly. The system detects this, raises a
tampering alert and sends it to the user’s smartphone. The user can again
request the video footage of the event.

Scenario 3: Face detection
In this scenario, the user has configured the device to perform face detection via
the mobile configuration app. If the system detects a face, the user is alerted
and a picture of the face is sent to the user’s smartphone.

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 8 of 20

The original requirement analysis document mentioned in addition two scenarios:
Scenario 4: Face recognition, and Scenario 5: Instant two-way voice
communication. These two scenarios were optional and were to be implemented
only after the successful implementation of the first three scenarios. After the
development of the three first scenarios, the allocated budget was already
consumed, and the optional scenarios have not been implemented.

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 9 of 20

7. EOT APPLICATION SOFTWARE DESCRIPTION

In the following, we start by stating the demonstrator requirements. We then
describe the software that runs on the EoT device. It consists of four modules:
(1) camera and ISP, (2) event detection, (3) event recording, (4) network
communication and the application logic.

7.1. Demonstrator requirements

A requirements analysis has been conducted for all demonstrators in the first
phase of the project. The result of the analysis has been documented in a report
that has been submitted as an annex for the mid-term review (“Annex 2”).

For the Peephole Surveillance demonstrator, the following requirements have
been identified. In the following table, we provide the name of each requirement,
and indicate if this requirement has been covered by the implementation or not.
In case the requirement was not implemented, we justify the modification of the
development plan in the last column.

ID Name Description Achieved

REQ001 Connect to WiFi
hot spot

Connection to the local
network/Internet

Yes, Broker on the
EoT device

REQ002
Connect to the
PC or
Smatphone app

Connection to the app
Yes

REQ003 Module set-up Set cloud address, login,
password, application

Yes

REQ004 Start operation Start the app on the module Yes

REQ005 Stop operation Stop the app on the module Yes

REQ006 Status

Send the module status:

• Active /Standby
• Event detected or not
• Last events
• Memory used/remaining
• Battery level
• I/O status
• Camera status (average

light level)

Partially (Not
implemented:
Memory used,
battery level,
camera status –
justification: not
needed)

REQ007 Take
photographs

Take a picture with the
camera and send it over wifi

Yes

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 10 of 20

REQ008 Loop recording
at 1 fps

Record 60 frames at 1 fps in
a circular buffer

Yes

REQ009 Circular buffer
freezing Freeze the circular buffer Yes

REQ010 Recording @ 25
fps or 12 fps

Record during the alarm
duration

Yes

REQ011 Send an alarm
to the cloud app

Send the alarm flag and
alarm type to the cloud
server

Partially – no cloud
server used, but
direct connection
with the
companion device

REQ012
Send the
picture of the
alarm

Send the picture
corresponding to the
triggering of the alarm to the
cloud server

Partially – no cloud
server used, but
direct connection
with the
companion device

REQ013 Send the pre-
alarm buffer

Send the circular buffer to
the cloud server

Partially – no cloud
server used, but
direct connection
with the
companion device

REQ014 Send the post
alarm buffer

Send the post alarm buffer to
the cloud server

Partially – no cloud
server used, but
direct connection
with the
companion device

REQ015 Send the live
video

Send the live video to the
cloud app

Partially – no cloud
server used, but
direct connection
with the
companion device

REQ016 Return to
standby mode

• Transfer all buffers to the
cloud server

• Clear buffers
• Resume circular buffer

recording

Yes

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 11 of 20

REQ017 Presence
detection

Detect one or several objects
moving in front of the
camera.

Size of the objects to be
determined (1 person at 5
meters)

Yes, face detection
when a person is
in front of the
camera

REQ018 Tampering
detection

• Detection of a dark
picture for more than 5
sec

• Detection of a partially
occulted picture for more
than 5 sec

• Detection of a highly
blurred picture for more
than 5 sec

Yes

REQ019 Face detection

• Detect the presence of a
face with a width ranging
between x and y pixels
(tbd)

• Detect a face oriented
between + and – X
degrees horizontally (tbd)

• Detect a face oriented
between + and – X
degrees vertically (tbd)

Yes

REQ020 Face contrast
Detect a face with a
minimum contrast of (10%)
of the full scale level (tbd)

Yes

REQ021 Scene
Illumination

Operation with a minimum
illumination of 1 lux on the
scene

Not tested

REQ022
Face thumbnail
extract and
send

Extract a thumbnail image of
the face detected in the
picture to the cloud server

Yes (direct
connection)

REQ023
Upload face
patterns to the
module

Upload a list of known face
patterns

No (optional
scenario, not
implemented)

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 12 of 20

REQ024
Send positive
face recognition
event

In case a facial match has
been detected, send the
event, face thumbnail and ID
to the cloud server

No (optional
scenario, not
implemented)

REQ025 Start bi-
directional audio

Start audio communication
with the module

No (optional
scenario, not
implemented)

REQ026 Stop bi-
directional audio

Stop audio communication
with the module

No (optional
scenario, not
implemented)

7.2. Software architecture

The architecture is mainly composed of an application software and a
communication module in the form of an MQTT broker. This broker is using the
PULGA library derived from the MOSQUITTO implementation.

Figure 1: Architecture of the EoT Device Software

7.3. Camera and ISP
This module provides control functionality for the camera. It defines an abstract
interface for camera control and provides a specific implementation for the Sony
IMX 208 camera. The module can be extended to work with other cameras by
providing an implementation of the camera interface for a new camera model.
The implementation for the Sony camera provides frame rate control, auto-
exposure (AE) and automatic gain control (AGC). The raw frames from the
camera are pre-processed by an ISP, which takes care of receiving frames
through the MIPI interface, de-noising them, eliminating dead pixels, applying a

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 13 of 20

lens shading correction, gathering statistics for AE and AGC as well as applying a
gamma correction.

7.4. Event detection
This module provides the event detection functionality. Specifically, it can detect
motion and tampering events as well as faces. Which types of events shall be
detected can be configured through a mobile app, which is described in detail in
the configuration software description document. A unique ID is assigned to each
detected event.

7.5. Event Recording
This module provides video recording functionality for detected events. If the
event detection module detects a new event, recording is started or continued (if
recording was started before already). If no events are detected for a predefined
duration, the recording is stopped. For each video frame a timestamp is stored
as well.

7.6. Network communication
This module provides network communication functionality to the app.
Specifically, it communicates with a mobile app through MQTT. This way the
mobile app can update the internal clock of the EoT device and inform the EoT
app about configuration changes. Furthermore, the EoT app can send alerts
about events and – upon request from the mobile app – recorded events and
video clips or a live video stream.

7.7. Application logic
This is the implementation of the logic of the application and integrates the other
modules in the app. It determines how to react to messages it receives from the
mobile app as well as how to react to the detection of a specific event. In
particular, it ensures that the event is recorded along with a video clip and that
an alert is sent to the mobile app.

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 14 of 20

8. EOT APPLICATION SOFTWARE DOCUMENTATION

In the following, we describe the most important interfaces of the modules.

8.1. EoT libraries used
This application uses the following libraries created in work package 3:

• MQTT broker
• WiFi functions
• JSON parser
• SDCardIO
• HistrogramMatching
• LEDs
• libccv

8.2. Camera and ISP
This module consists of two parts: the camera and the ISP management
functionalities. They are described in the following sections.

8.2.1. Camera interface
This component provides a general interface for video cameras as well as an
implementation of that interface for the Sony IMX 208 camera. The camera
interface for the IMX 208 is defined as a singleton C++ class as follows:

class IMX208 : public ICamera
{
public:
 static IMX208* getInstance(bool colorCamera = false);

 IMX208(const IMX208&) = delete;
 IMX208(IMX208&&) = delete;
 IMX208& operator=(const IMX208&) = delete;
 IMX208& operator=(IMX208&&) = delete;
 ~IMX208() override;

 uint32_t getWidth() const override;
 uint32_t getHeight() const override;
 uint32_t getBytesPerPixel() const override;

 bool start() override;
 bool stop() override;

 uint8_t* getNextFrameBuffer() const override;
 uint32_t getFrameSequenceNumber() const override;

private:
 IMX208(bool colorCamera);
};

It extends the generic camera interface ICamera. The individual methods are
described in the following:
The getWidth, getHeight and getBytesPerPixel methods return the width, height and
depth (in bytes) of the video frames respectively. To start or stop capturing

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 15 of 20

video frames the respective start and stop methods need to be called. The
getNextFrameBuffer method will block until a new frame becomes available and
then return a pointer to the frame data. Internally, it performs a triple buffering
to ensure smooth operation. If frames are polled at a rate lower than the
camera’s frame rate, it will automatically drop frames. Automatic gain and
exposure control are also handled internally without any need for further
configuration. Finally, the getFrameSequenceNumber method will return the
sequence number of the current frame. This can be used, for example, to detect
skipped frames.

8.2.2. ISP interface
The frame pre-processing uses dedicated hardware blocks of the Myriad
processor to ensure optimal efficiency and speed. In Myriad terminology the
interface to this hardware implementation of the image processing pipeline is
called OPipe. Based on this OPipe interface, we have created a specific
implementation for the Sony IMX 208 camera called IMX208Opipe. Its public
interface is defined as follows:

struct OpipePipeline
{
 Opipe p;
 DBuffer* pOut; // to direct DDR output
};

class IMX208Opipe
{
public:
 static void createOpipe(OpipePipeline* pipeline,
 uint32_t width,
 uint32_t height);

 static void configureOpipe(Opipe* opipe,
 AeAwbPatchStats* aeStats,
 const uint16_t* lutTable,
 bool colorCamera);
};

The first method createOpipe is used to initialize a new ISP configuration. It
needs the width and height of the video frames and a structure containing all
other necessary objects. In particular that includes the OPipe itself and a pointer
to a location in memory to which the processed frame is written to. The OPipe is
initialized by this method and further configured by the configureOpipe method.
It requires the initialized OPipe as well as a location in memory where the auto
exposure statistics shall be written to and a memory location containing the look-
up table used for gamma correction. The last parameter determines whether the
ISP is configured to work with a colour or grayscale version of the camera.

8.3. Event detection
The event detection module consists of several interfaces that address different
event types. They are described in the following sections.

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 16 of 20

8.3.1. MotionDetection.hpp
This interface provides only one function: bool detectMotion(const frameBuffer*
grayImage). It requires a pointer to a frameBuffer object containing a grayscale
image as input. It returns true if motion was detected in this frame and false
otherwise. The motion detection code assumes that it is called every frame. This
way it can internally build the statistics necessary to decide whether motion has
been observed or not (e.g. only noise). If this assumption is violated, false
positives may occur.

8.3.2. TamperingDetection.hpp
This interface also contains only one function: bool detectTampering(const
frameBuffer* rgbImage). It takes a frameBuffer object containing a RGB colour
image and returns whether tampering was detected (true) or not (false). The
tampering detection code also assumes that it is called every frame. This way it
can internally build the statistics necessary to decide whether tampering has
taken place or not. If this assumption is violated, false positives may occur.

8.3.3. Detection.hpp
This interface contains only the following function: void detection(const frameBuffer*
rgbImage). It is a convenience function that takes care of everything necessary to
execute motion and tampering detection. For example, it performs the grayscale
conversion for the motion detection as well as a downscaling of the image in
order to increase efficiency and execution speed. Furthermore, it checks whether
motion and tampering detection have been enabled in the configuration and only
executes them if that is the case. Finally, it also sets internal event status flags.
They are, for example, used by the networking module to alert the user about
detected events.

8.3.4. FaceDetection.hpp
This interface provides access to a C++ class for face detection. Besides the
constructor and destructor, it only has one public method. The constructor loads
the trained face detection model from the SD card into main memory and
initializes the FaceDetector class. The memory is released by the destructor
when the face detector object is destroyed. The remaining method takes care of
detecting faces in a video frame and is defined as follows:

uint32_t FaceDetection::detect(const frameBuffer& frame,
 frameBuffer& yCbCrFrame,
 uint8_t* jpgBuffer,
 unsigned int jpgBufferSize);

It requires a framebuffer object containing a video frame as input. Furthermore,
it receives a version of the frame in YCbCr colour space. If a face is detected, the
respective area in the YCbCr image is cut out and encoded as a JPEG. The JPEG
is written to the jpgBuffer pointer provided in the function’s interface. The last
parameter jpgBufferSize informs the function about the size of the JPEG buffer.
This way it can ensure that the JPEG encoded image is not written beyond the
bounds of the buffer.

8.4. Event recording: Recording.hpp
Event recording module is used to store frames (data) and information about the
events they belong to (meta-data). It provides functions for frame rate control
(RecordSetFPS), frame recording (RecordFrame), meta-data look-ups

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 17 of 20

(RecordFindFirstMetaData, RecordCountMetaData, RecordFindMetaData,
RecordGetMetaData) and frame look-up (RecordGetItem). They are described in the
following sections.

8.4.1. Frame rate setting
The function void RecordSetFPS(uint8_t fps) is used to inform the recording process
of the frame rate (the fps parameter) at which frames are supplied. This
information is stored with each recording in order to be able to handle cases
where the frame rate may change from recording to recording.

8.4.2. Frame recording
The function void RecordFrame(const uint8_t* jpeg, uint32_t jpegSize) records a single
JPEG encoded video frame (parameter jpeg) of a specific size (parameter
jpegSize) by adding it to the end of the list of recorded frames for the currently
active event.

8.4.3. Finding meta-data for recorded events
Meta-data look-ups can be done either by event (ID and type) or by time. The
former can be done with the following function:
int32_t RecordFindMetaData(uint32_t eventId, EventType eventType)
It takes an event ID and type and returns an index that can be used to access
the meta-data store. If now matching entry could be found, it returns -1.
Look-ups using a time span are done with the following two functions:
uint32_t RecordFindFirstMetaData(uint64_t from, uint64_t to);
uint32_t RecordCountMetaData(uint64_t from, uint64_t to);
Both require the beginning and end of the time span to search for.
RecordFindFirstMetaData returns the index of the first event in that time frame or 0
if none were found. The second function RecordCountMetaData returns the number
of entries in that period of time.

8.4.4. Retrieving meta-data and frames
Once an index or a range of indices has been acquired through a meta-data
lookup, it can be used to access the meta-data with the help of the following
function: RecordingMetaData RecordGetMetaData(uint32_t index).
It takes an index and returns the respective meta-data element. It has the
following structure:

struct RecordingMetaData {
 EventType eventType; // The type of the event, e.g. motion.
 uint8_t fps; // The framerate of the recording.
 uint32_t eventId; // The ID of the event.
 uint32_t startIndexFrame; // Index of the first recorded frame.
 uint32_t endIndexFrame; // Index of the last recorded frame.
 uint64_t startTimestamp; // Timestamp of the first rec. frame.
 uint64_t endTimestamp; // Timestamp of the last rec. frame.
};

The range of frame indices in the meta-data structure can be used to access the
recorded frame through the following function:
RecordingItem& RecordGetItem(uint32_t index);
It takes a frame index and returns a reference to the respective recorded data,
which has the following structure:

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 18 of 20

struct RecordingItem {
 std::array<uint8_t, RECORDING_JPEG_IMAGE_MAX_SIZE> binary;
 uint32_t size;
};

In this structure binary is an array containing the binary JPEG image data. The
second item named size indicated the actual size of the binary data in bytes.

8.5. Network communication
The software on the EoT device and the configuration app are communicating
through the MQTT protocol. In this demonstrator the MQTT broker is running on
the EoT device. It was implemented as a reusable library in WP3. This
demonstrator uses that implementation and wraps it in a class called Broker,
which acts as a MQTT broker and client at the same time. It is defined as follows:

class Broker
{
public:
 static Broker& getInstance();
 void createWifi(const char* ssid, const char* password);
 void connectToWifi(const char* ssid, const char* password);
 void disconnectWifi();
 void start();
 void sendMessage(const char* topic,
 const char* messageData,
 uint32_t messageDataLength);
 bool listen();
 void stop();

private:
 Broker() = default;
};

The class manages everything from the Wi-Fi hardware to handling incoming
messages. To this end the class implements the singleton pattern to ensure that
at any given time at most one instance exists. This ensures the used hardware
resources (i.e. the Wi-Fi chip) are not concurrently used. The individual methods
are explained in the following.

8.5.1. Class instantiation
Access to the only instance is provided through the static getInstance method,
because the constructor is private in accordance with the single pattern. This way
the class can only be instantiated by itself.

8.5.2. Wi-Fi management
The wireless connection is managed with three methods. The first one createWifi
creates a wireless access point with the provided SSID. The wireless
communication is encrypted by the WPA standard and the specified password.
The second method connectToWifi connects the EoT device to an existing WPA
encrypted wireless access point with the specified SSID and password.

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 19 of 20

8.5.3. MQTT communication
The MQTT broker is started and stopped by the respective start and stop
methods. It requires a working Wi-Fi setup either by establishing an access point
or by connecting to one. The start method will also make sure that the client is
subscribed to the relevant MQTT topics defined for this demonstrator. MQTT
messages can be sent through the use of the sendMessage method. It requires a
MQTT topic as zero terminated string, the MQTT message itself a string
(messageData) with known length (messageDataLength). In order to receive
messages, the listen method needs to be called periodically. The call is relayed to
the MQTT broker implementation, which will check the receive buffers in the Wi-
Fi chip for new data and process any incoming messages. Specifically, it will
check the MQTT topic and relay the messages to all subscribers of that topic. In
case of topics relevant for the peephole app it will relay those to the broker class.
The messages in this demonstrator are encoded as JSON documents. The broker
class will parse these messages and trigger the relevant reactions.

D4.1 Demonstrator 1, EoT Application H2020-643924-EoT

Page 20 of 20

9. CONCLUSIONS

In this document, the deliverable software for the EoT board part of the Peephole
demonstrator has been presented and documented. The software itself has been
made available to the reviewers on a GitLab server. The software running on the
EoT Board is only one part of the demonstrator and the second part is presented
in document “D4.2 – Peephole demonstrator Configuration App”. After describing
the demonstrator, the software has first been presented, then a complete
documentation of the API of the software has been provided.

- End of document -

	1. Document Information
	2. Document History
	3. Abstract
	4. Table of Contents
	5. Introduction
	6. Short description of the demonstrator
	7. EoT Application Software Description
	7.1. Demonstrator requirements
	7.2. Software architecture
	7.3. Camera and ISP
	7.4. Event detection
	7.5. Event Recording
	7.6. Network communication
	7.7. Application logic

	8. EoT Application Software Documentation
	8.1. EoT libraries used
	8.2. Camera and ISP
	8.2.1. Camera interface
	8.2.2. ISP interface

	8.3. Event detection
	8.3.1. MotionDetection.hpp
	8.3.2. TamperingDetection.hpp
	8.3.3. Detection.hpp
	8.3.4. FaceDetection.hpp

	8.4. Event recording: Recording.hpp
	8.4.1. Frame rate setting
	8.4.2. Frame recording
	8.4.3. Finding meta-data for recorded events
	8.4.4. Retrieving meta-data and frames

	8.5. Network communication
	8.5.1. Class instantiation
	8.5.2. Wi-Fi management
	8.5.3. MQTT communication

	9. Conclusions

