Horizon 2020 PROGRAMME ICT-01-2014: Smart C”e?eﬁﬁ{/es a 6élys é% 01/03/2016

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No 643924

EYES DF THINGS

D3.3

Firmware Documentation

RHORIZON 2020

LE PROGRAM/ REC XCHE ET
D'INNOVATION DEL |[\I\_, \J UFLF[: JINE

Copyright © 2015 The EoT Consortium

The opinions of the authors expressed in this document do not necessarily reflect
the official opinion of EOT partners or of the European Commission.



1. DOCUMENT INFORMATION

Deliverable Number D3.3

Deliverable Name Firmware documentation

Authors N. Vallez (UCLM), J. L. Espinosa-Aranda (UCLM), J. M.
Rico (UCLM), S. Krauss (DFKI), R. Reiser (DFKI), A.
Pagani (DFKI), A. Dehghani (MOVIDIUS)

Oscar Deniz (UCLM)
e-mail:Oscar.Deniz@uclm.es
phone: +34 926295300 Ext.6286

Responsible Author

Keywords EoT Firmware, API
WP WP3

Nature R

Dissemination Level PU

Planned Date 01.03.2016

Final Version Date 29.02.2016

Reviewed by

Verified by

O. Deniz (UCLM)

C. Fedorczak (THALES)



D3.3 Firmware Documentation

2. DOCUMENT HISTORY

H2020-643924-EoT

Person Date Comment Version

N. Vallez 02.02.2016 | Initial 0.1

J. L. Espinosa- 11.02.2016 | WiFi Data Transfer section 0.2

Aranda

N. Vallez 12.02.2016 | a@mera interface and Video 0.3
Streaming sections

J. L. Espinosa- - . . .

Aranda and N. 16.02.2016 | Other vision libraries section and |, ,
revision of previous sections

Vallez

N. Vallez 17.02.2016 ReV|_S|on of Other vision libraries 0.5
section

3. L. Espinosa- Introduction and Computer

- - ESP 19.02.2016 | vision: Sparse optical flow (LK 0.6

Aranda . . .
point tracking) sections

N. Vallez 22.02.2016 Povye_r Management section and 0.7
revision

N. Vallez 23.02.2016 Revision of Introduction _and 0.8
Power Management sections

S. _Krauss, R. 25.02.2016 | DFKI sections and abstract added | 0.9

Reiser

A. Dehghani 25.02.2016 | Motor control added 0.10

3. M. Rico 25.02.2016 Rotation Invariant Face Detection 0.11
added

A. Dehghani 26.02.2016 | CNN 0.12

O. Deniz 29.02.2016 | Final version after Thales 0.13

Page 3 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

3. ABSTRACT

This document describes the firmware software developed in EoT as of March
1st, 2016. This firmware is intended to be compiled for and executed on the
Myriad 2 SoC along with a number of other hardware components such as Wifi,
SD card, etc. The software modules have been generated according to the task
structure of WP3 (Software). Some of the tasks described in this document were
not in the original DoW but were added later as they were considered relevant
for the project objectives (Other vision libraries, Motor control, CNN, audio input
& codec). The main participating partners are UCLM, DFKI and Movidius.
Deliverables D3.1 and D3.2 described the Control Mode software generated for
desktop and Android platforms, along with the associated firmware side, and
thus they will not be covered here.

Page 4 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

4. TABLE OF CONTENTS

1. DocumMeENt INfOrMatioN ... et s e reaiiiiaaaaes 2
2. [DToTo{U] g aT=T 0Ll 1153 o] oY A PP 3
3. Y 1 o = 4
4, =101 (ST ) O 1 (= 1 = 5
5. Y o T 11 = 8
6. ] o 0 T 11 Tt o o} o S 10
[ A o 1= T A PP 10

I 171 T 10

Myriad 2 programming paradigms .......covieiiniiiiiireieiereaeaaeaaeaes 11

o N I 10 0= L 13

o J I /=] o 7o 1] 1 o ] o N 14

7. WiFT data tran s er v s 16
| g} ol e Yo 18 Tt o o ] o 1 16

QL0 1Y T E3 T U 17

L0 1 T o T 17

T =Y =] o T 18

0 Yo [ 18
Conclusions and FUEUre Work ..ouiiiii i rnare e s aees 19

8. (O] 08 1=] = T 1 (=] 1 = 1L 20
| g}/ (o T [ ot oo o I 20

[ T X701 T 171 22

L0 ] o o= 22

I Tl < 1= 1 Lo P 23

(oY [ 24
Conclusions and FUEUre WOork ..ouvviiiii i e e 24

9. [V Ao [=To Ty g <T= 1 11 [ 25
| 1] ol e Yo 18 Tt o [0 o 1 25

R IS ST /=] 26
SUPPOrted Players ..ot 27

QL0 1Y I ET T U 29

L0 ] T o T 29

0 o [ 29

. Conclusions and FUEUre WOrK ....oviiiiiiiii i e 30
Input buttons/DIP SWItChes ....cviiii e 31

| 1] ol e Yo 18 Tt o [0 o 1 31

L0 1 T o T 31

0 o [ 31
Conclusions and FUEUre Work ..ouiiiii i r e s s aes 32

SD card ManagemeEnt . ... e 33

| g}/ 0 T [ ot o [0 o I 33

[ T X701 TR 1T 33

L0 ] o o= 33

I Tl < 1= 1 Lo P 34

(oY [ 34

.6. Conclusions and FUEUre Work ..ooiviiiii i i 34

3 A = Lo Yo o (o Y= L] 35
INErOdUCEION ... et 35

Page 5 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

13. Control mode API, embedded side.......cviiiiiiiiiiiii e 37
14.  Audio iNPpUt & OULPUL .o e 38
| g}/ 0 T [ ot o [0 o I 38

[T = =] 1 o T 38

0 o [ 38
Conclusions and FUEUre Work ..ouiiii i r e s aees 38
Computer VISION: CNN ...uoiiiiiii i e are e e aneas 39

| 1] ol e Yo 18 Tt o [0 o 1 39

Movidius Fathom CNN framework ....civiiiiiiiii i i rsiinneees 44
MvTensor Implementation Details.......c.oovviiiiiiiiiiiii e 45
GoogleNet EXample ... 47
Computer vision: Colour histogram matching ... 57

| g}/ 0 T [ ot o [0 o 57

101 T o T 57

(oY [ 57
Conclusions and FUEUre Work ..ouvviiii i e e 57
Computer vision: Keypoint matching ........coooiiiiiiiiiiiiiic e 58

| Yoo T [ ot o [0 o I 58

[ T X701 T 1T 59

L0 ] o oS 59

I Tl 1= 1 Lo P 59

(oY [ 59
Conclusions and FUEUre Work ..o e e 59
Computer vision: Rotation-invariant face detector...........cooiiiiiiiinn. 60

| 1] ol e Yo 18 Tt o [0 o 1 60

QL0 1Y I ET T U 68

L0 ] T o T 68

[T = =] 1 T 70

0 o [ 70
Conclusions and FUEUre Work ..ouiiiiii i rnnre s s reaees 70
Computer vision: Sparse optical flow (LK point tracking)...........c.ccevvns 71

| g}/ 0 T [ ot o [0 o 71

L0 TV I T3] S 74

101 T o T 74

I Tl 1= 1 Lo P 78

(oY [ 78
Conclusions and FUEUre WOork ..ovvviiiiiiiiiii i e e 79

PoWer Management .o e 80

| g}/ (o T [ ot oo o I 80

LOW POWEE Stales ..viiiiiiii i i e 81

L0 ] o oS 82

(oY [ 82

5. Conclusions and FUEUre WOork ..ovvviiiiiiiiiii i e e 85

21. Control mode API, Desktop Side.....covviiiiiiiiiiiiii i 86
22. Control mode API, ANAroid ....c.ccviiiiiiiiiiiiic i i i i 87
23.  Other ViSion [IDrariEs v i i s s raaaneeas 89
1 e Yo [ Lo o o PP 89

Page 6 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

QL0 1Y I ET T U 94
L0 ] T o T 95
LiCENSING c et e 109
(00 Y 114
Conclusions and FUEUre Work ...uiiiiii i i s nans 115
140 (o] el oo o 1o o] S 116
| Yoo T [ ot o [0 o 116
1 ToY oY a T Oo] o1 oY Y-} ad 116
Android App for Ground Robot control. .......c.ccceviiiiiiiii i 120
[ 0 1T T 1T T 123
L0 ] o oS 123
[Tl 11 Lo P 123
(oY [ 124
8. Conclusions and FUEUre WOrk ...oiiiiiiiiiiiie i i i naes 124
S TR oY a Lol [8=1 o] o 1= 125
26, GlOSSAIY .ttt 126
Annexes:
Annex 1 WiFi Functions
Annex 2 Camera

Annex 3 RTSP

Annex 4 Buttons, Switches and LEDs
Annex 5 Crypto

Annex 6 SDCardIO

Annex 7 Elf Loader

Annex 8 FlashIO

Annex 9 Audio

Annex 10  Histogram Matching

Annex 11 Rotation-Invariant Face Detection
Annex 12  Cherokey 4WD

Page 7 29-02-2016



D3.3 Firmware Documentation H2020-643924-E0T
5. LIST OF FIGURES

Figure 1. Myriad 2 BlOCK Diagram .. ...c.ouiieiiiiiiiiie e e e e e e s 10
Figure 2. Standard programming paradigm diagram .........cccvviieiiiiiiiinenninennns 11
Figure 3. One Leon programming paradigm diagram.........ccoviviiiiiiiiiieniiennnenns 12
Figure 4. Bare metal programming paradigm diagram..........c.ccoeviiiiiininnennnnns. 12
Figure 5. EOT firmware structure ... ..o 14
Figure 6. TT CC3100MOD WIiFi Module.....cciieiiiiiiiiii i i vnee s enennneeas 16
Figure 7. MIPI camera used for development........cooiiiiiiiiiiiiiiii e 20
Figure 8. Camera execution diagram ........c.ovieiiiiiiiiirierre e e e e 21
Figure 9. Camera frame retrieved from Pulga........ccoooiiiiiiiiiiii i 23
Figure 10. RTSP video Streaming....cccviiiiiii i i s e s e ae e naneeas 23
Figure 11. RTSP Player TCP configuration .........ccooiiiiiiiiiiii e 28
Figure 12. VLC TCP configuration ........coieiiiiiiiiiii e e e e e 29
Figure 13. RTSP streaming results with 2 clients ... 29
Figure 14. Buttons, DIP switches and LEDS.........ccccoiiiiiiiiiiiiiiene e 31
Figure 15. SD card SIOt ... 33
Figure 16. Flash memory layout ..o e 35
Figure 17. Architecture of a convolutional neural network...........c.coviiiiiinnnn, 40
Figure 18. Kernel conVOIULION ... e e 40
Figure 19. Architecture of LENEL....civiiiiii i e e 41
Figure 20. An illustration of the architecture of AlexNet CNN..............coveevinenns 42
Figure 21. ZF Net architecture ... ..o e 43
Figure 22. GoogleNet architecture ..o e 43
Figure 23. Movidius Tool converts into DNN using Conv/MatMul libraries ......... 44
Figure 24. Movidius MDK including Fathom and Tensor CNN support............... 45
Figure 25. Core operation in MvMatMul Library.......ccccoviiiiiiiiiiiiiiiei e 48
Figure 26. Face detection sequence diagrami.....ccoiiieiiiiiiiiiiiie i ieeaeeaas 60
Figure 27. Rotation matriX....cooiiriiii i i e 62
Figure 28. Face detection dependencCies ........coovvuiiiiiiiiiiiiiiii e 62
Figure 29. Memory positions and SiZe ......coiiviiiiiiiii i e 65
Figure 30. Wrong rotated image.....cceviiiiiiii i i eeneeas 67
Figure 31. Rotated images. . ..o 69
Figure 32. Vtrack flow diagram ..o e 73
Figure 33. OpenCV optical flow example......ccoiiiiiiiiii e 78
Figure 34. Vtrack optical flow example ..o 79
Figure 35. Myriad 2 power islands diagram ........ccoviiiiiiiiiii e 80
Figure 36. Include dependency graph for OsDrvCpr.h ....c.coviiiiiiiiiiiiiiieiens 83
Figure 37. OpenCV in the cloud paradigm......c.ccceiiiiiiiiii i e 89
Figure 38. Add NEW @D «iviiiiiiiiiii i i e e e s e e e se e aneaaneaaneas 90
Figure 39. Selecting Web2py ..o s 90
Figure 40. Choosing the application Name ..o e 91
Figure 41. MDK vs OpenCV benchmarks.......ccoviiiiiiiiii e 99
Figure 42. QR first test image ......ooviieiiiii 104
Figure 43. QR second test image ...c.cviiiiiiii i e i 104
Figure 44. QR third test imMage ...cooiiiiii i e 105
Figure 45. QR fourth test image ... ..o 106
Figure 46. QR fifth test iMage .....ccoiiiiiii 106
Figure 47. QR sixth test IMage ...coiiiiiii i i e 107
Page 8 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.

Page 9

QR seventh test image......coooiiiiiii i 108
Cherokey 4WD from DFRODOL. ....ccviiiiiiiiiiiii e 116
Connection between the EoT DevBoard and the Cherokey 4WD ..... 119
Ground RODOt ANAroid APP «oveiiriiiiiii i eeaaneas 120
Entering the IP address of the EoT board .......c.ccoviviiiiiiiiiinnnen, 121
Connecting and Connected to EoT board .......cccvviivviiiiiiiiiiee e, 121
Motion control using phone orientation ...........coooviiiiiiiiiiiins 122

29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

6. INTRODUCTION

IlMyriad 2

The EOT device is based on the Myriad 2 VPU. It supports two trillion 16-bit
operations per second at a power consumption of 500mW. The architecture is
based on 12 128-bit very long instruction word "SHAVE" processors and two 32-
bit RISC processors (LeonOS and LeonRT). The chip includes 2-Mbytes of on-chip
memory and 400-Gbytes per second of sustained internal memory bandwidth.

The off-chip memory requirement is for up 8-Gbits of 2 vy 32 LPDDR2 or LPDDR3
DRAM capable of up to 1,066MHz operation. It supports up to six full HD 60
frames per second camera inputs simultaneously via MIPI lanes.

Given its highly parallelized data processing architecture and on-chip memory
fabric, Myriad-2 can achieve high-performance processing with low latency.

=

[ Software Controlled 1/0 Multiplexing

I I

(; [ INTERFACES

-/

MIPI SPI, USB3, 12C, 125, LCD, CIF, UART, ETHERNET, ETC.
x 12 lanes I
P

-
RISC-RT
Imaging/Vision Hardware Accelerators

RISC-RTOS

L5

<
<+
4+
-+
<
*
<

e ﬁ

Figure 1. Myriad 2 Block Diagram

BRTEMS

The operating system used by the EoT device is RTEMS. This OS is designed for
real-time, embedded systems and supports various open API standards. In this
project we will focus on POSIX. It also provides a port of the FreeBSD TCP/IP
stack and support for several filesystems as the FAT filesystem.

Page 10 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

RTEMS does not provide any form of memory management or processes. In
POSIX terminology, it implements a single process, multithreaded environment.

This OS is distributed under a modified GNU General Public License (GPL),
allowing linking RTEMS objects with other files without needing the full
executable to be covered by the GPL.

IlMyriad 2 programming paradigms
6.3.1. Standard programming paradigm

This first approach concerning Myriad 2 is focused on using the implemented
SIPP pipeline. SIPP is a programming paradigm that involves a graph of
connected filters in which data is streamed from one filter to the next, on a
scanline-by-scanline basis. Images are consumed in raster order not requiring
DDR accesses (other than accessing any pipeline input or output images located
in DDR, using DMA copies to/from local memory). In addition to the performance
and power benefits of avoiding DDR accesses, the design can also reduce
hardware costs, allowing stacked DDR to be omitted for certain types of
applications.

As the standard programming paradigm for Myriad, this approach involves using
RTEMS running on LeonOS and the SIPP scheduler on LeonRT. The advantage of
this paradigm is that it provides parallelization in an easy to use environment.
The SIPP scheduler itself is able to ensure parallel pipeline configurations for
managing the HW filters and exterior interfaces with a low footprint so as to
ensure LeonRT optimized utilization. The SIPP used number of SHAVEs is
configurable, so any extra number of SHAVEs not used for line based pipelines
will remain free to be used by the RTEMS operating system running on LeonOS
for various other purposes including computer vision algorithms.

dd1s 1 paubisse saaeys N

SQuoaT 03| B|qelieAR N-ZT

Figure 2. Standard programming paradigm diagram

Page 11 29-02-2016


https://en.wikipedia.org/wiki/GNU_General_Public_License

D3.3 Firmware Documentation H2020-643924-EoT

6.3.2. The One Leon programming paradigm

Some applications might not require heavy line based processing. Such
applications might choose to completely switch OFF the LeonRT processor and
instead only use LeonOS with (or without) RTEMS. HW filters may still be used.
Using this programming paradigm, Leon OS would control all of the applications
running on the 12 SHAVE cores.

SOU0ST 0} B|QEIBAE SBABUS ||Y

Figure 3. One Leon programming paradigm diagram

6.3.3. Bare metal programming paradigm

A bare metal programming paradigm will also be supported by the MDK build
system. This will allow developer to use both LEON cores without any operating
system, only minimal schedulers running to control the pipelines application. This
paradigm requires more integration efforts but allows developers to write
applications which will not be affected by any operating system overhead.

o} paubisse saAeysS N

guoa] oy| ajqejiear N-ZT LHUORT

w

Figure 4. Bare metal programming paradigm diagram

Page 12 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

6.3.4. Selected paradigm

With regard to EoT, "one Leon programming paradigm" has been the selected
paradigm. This approach allows to deactivate the LeonRT when not necessary,
reducing the energy consumption.

BlEoT firmware

The EoT firmware is divided in the following modules:

Wifi data transfer (Section 7). This module provides a layer of
functions for managing the WiFi chip.

Camera interface (Section 8). This module provides software on top of
the camera driver for retrieving frames.

Video streaming (Section 9). This module provides an application for
streaming the video captured through the camera interface.

Input buttons/DIP switches (Section 10). This module provides
functionality to check the status of the DIP switches and user pushbuttons
in the board. It also provides functions to turn the two user LEDs on/off.
SD card management (Section 11). This module provide the
functionality for reading and writing data to the SD card.

Bootloader (Section 12). This module allows the EoT board to be
started on control mode or to run another uploaded application.

Control mode API, embedded side (Section 13). This application is
used for configuring and managing the EoT board.

Audio input & output (Section 14). This module provides the
functionality for reproducing a stored audio file.

Computer vision: CNN (Section 15). This module includes an
implementation of Convolutional Neural Networks for the EoT device.
Computer vision: Color histogram matching (Section 16). This
module includes an implementation of color histogram matching
algorithms for the EoT device.

Computer vision: Keypoint matching (Section 17). This module
includes an implementation of keypoint matching algorithms for the EoT
device

Computer vision: Rotation-invariant face detector (Section 18).
This module includes an implementation of rotation-invariant face
detection algorithms for the EoT device.

Computer vision: Sparse optical flow (LK point tracking) (Section
19). This module includes an implementation of sparse optical flow
algorithms for the EoT device.

Power management (Section 20). This module can be used in an
application for placing the Myriad chip into a low-power state.

Control mode API, Desktop (Section 21). This is a JAVA library and
application for desktop PC that provides functions for interaction with the
“Control Mode API embedded side” module.

Control mode API, Android (Section 22). This is an Android library and
application for mobile phones that provides functions for interaction with
the “Control Mode API embedded side” module.

Page 13 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

- Other vision libraries (Section 23). This module provides ports of
several pre-existing vision libraries to the EoT platform.
- Motor control (Section 24). This module provides communication with

motors.
EoT Device
[ ter Vision Functi lity
Other Vision Libraries
Rotation-
Sparse Color =
o 2 Keypoint Invariant
Optical Histogram Matchin F CNN OpenCV Google
Flow Matching a ace OpenCV PE! Cloud 5
Detector Lo |[2ainthel| Lboov || yiggoy || Quic
API
Client
Control Mode Video
API Streaming
Control mode Control mode e =
API, Desktop APL, Android >
WiFi Data Camera Brnstiana SD Card Input Buttons Audio Power Motor
Transfer Interf: & DIP switch Input/Output Management Control
Operating System

Figure 5. EoT firmware structure

BEOT repository

The EoT repository is hosted in the following link:
https://gitlab.com/espiaran/EoT.

In this repository there is a first level referring to the ‘Development platform’
(Myriad, Desktop or Android). In turn, inside each platform there are directories
for libraries (libs), unit tests (unittests) and examples and applications (apps).
On the root directory there is also a documentation directory (doc) to keep any
necessary documents. The structure graph is as follows:

|-=--- >sdcard_example
|----- >wifi_example
[-==-- >pulga_control_app

|----- > .
|----- >libs
[----- >SDCardIO
[----- >Crypto
|----- > ...
|----- >tools
[----- >flasher
|----- >unittest

Page 14 29-02-2016


https://gitlab.com/espiaran/EoT

D3.3 Firmware Documentation H2020-643924-EoT

[----- >sdcard
[----- >crypto
|----- > ...
I
[----- > desktop
|----- >apps
|----- >libs
|----- >unittest
I
|-=--- > .

Currently the repository contains 369642 lines of code. The cloc application
(http://cloc.sourceforge.net) has been used to calculate this statistic. It is worth
noting that some of the libraries have been ported, not implemented from
scratch. The complete output of the program is:

cloc EoT --exclude-lang=CUDA,HTML,Groovy, Prolog,XML,HTML
1343 text files.
1195 unique files.
1400 files ignored.

http://cloc.sourceforge.net v 1.60 T=4.72 s (222.7 files/s, 124714.3 lines/s)

Language files blank comment  code

C 512 32769 82365 217049
C++ 174 26625 29754 106192
C/C++ Header 224 10495 27095 33886
Java 97 2107 7119 10872
make 41 358 693 1187
Python 3 113 67 441
IDL 1 2 0 15

SUM 1052 72469 147093 369642

Page 15 29-02-2016


http://cloc.sourceforge.net/

D3.3 Firmware Documentation H2020-643924-EoT

7. WIFI DATA TRANSFER

Ilintroduction

In this task, software has been developed on top of the SPI driver, developed by
Movidius, for the WiFi module CC3100MOD from Texas Instruments!. This
software provides a layer of functions for creating an ad-hoc WiFi, establishing a
connection with another device using the desktop and mobile APIs defined in
Tasks “Middleware API  Desktop” and “Middleware API  Android”,
sending/receiving data (of any kind) and closing connection. Moreover, the
application developed in Task “"Control Mode” directly depends on this.

._"n.,\’ 2o

Figure 6. TI CC3100MOD WiFi module

The CC3100MOD can create an ad-hoc network and has security and encryption
(WPA2). The ad-hoc WiFi allows connection with the external configuration
computer even without WiFi infrastructure. Furthermore, since the SSID is
public, an additional security feature is used: a network password. When using
WPA, the password is a string between 8 and 63 characters long. When in place,
this password is necessary to use the EoT device. The password is stored in the
CC3100MOD'’s flash memory and can be eventually changed (or removed) from
EoT’s Control mode.

The result of this task is a library called WifiFunctions, which is an abstraction
layer between the Simplelink WiFi driver and the programmer. The functionality
provided, apart from the Simplelink driver functions (check CC3100
programmer’s guide at http://www.ti.com/lit/ug/swru368a/swru368a.pdf for
more information), is as follows:

- Generation of access point.
- Connection to existing access points.
- Scanning of the WiFi spectrum to find the less saturated channel.

1 see http://www.ti.com/product/cc3100mod?keyMatch=CC3100MOD&tisearch=_Search-
EN

Page 16 29-02-2016


http://www.ti.com/lit/ug/swru368a/swru368a.pdf
http://www.ti.com/product/cc3100mod?keyMatch=CC3100MOD&tisearch=%20Search-EN
http://www.ti.com/product/cc3100mod?keyMatch=CC3100MOD&tisearch=%20Search-EN

D3.3 Firmware Documentation H2020-643924-EoT

Profile management for saving a previously generated access point, and
reuse it when the device is restarted.

Ping.

Change own MAC address

Set WiFi signal intensity and power policy

BllKnown issues

The Wifi chip only supports one client connection in AP mode. This was
first observed by UCLM. This is not indicated neither in the Wifi manuals
nor in the TI web. It is only mentioned in one post in the TI forum. We
assume only one client will make the first connection to the EoT device.
This, in fact, can be considered more secure. More clients can connect to
the EoT device after connection to an external Wifi.

Potential conflict detected with FlashIO in the first hardware setup
proposed over the SPI bus. This conflict is solved with EoT Rev1 board.
Nonblocking calls in the first version of WiFi driver do not work in server-
related functions (accept and select, the timeout parameter does not work,
so these calls block forever). Movidius subcontractor Emdalo sent
additional code that uses the non-blocking call along with a wait, and
another thread to signal the end of the wait, but this hack does not solve
the problem completely. It will be solved in future versions.

Blunit tests

The

unit test for WifiFunctions can be found in the repository in the

WorkPackage_3\myriad\unittests\wifiFunctions folder.

The following tests are performed:

Save and restore a WiFi profile.

Restore a WiFi profile when no profile has been saved previously.

Generate an Access Point using the default configuration.

Generate an Access Point using a saved profile.

Change the WiFi device to Station mode (mode necessary to connect to
other access point).

Change the WiFi device to access point mode (mode necessary to generate
an access point).

Expected output

The expected output of the tests must be similar to:

Page

. .test Save Restore Profile OK

. .test Generate AP From Profile Index OK
: .Failed to get a profile

: No profile found on index 0

17 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

UART: test Save Restore Profile Error OK
UART: .test Generate AP From Default Profile OK
UART: .test set mode to Station OK
UART: .test set mode to AP OK

UART:

UART: OK (6 tests)

UART:

LOS: Application terminated successfully.
Batch execute: <echo $exit_opt>

exit

Batch execute: <$exit_opt>

-Licensing
7.3.1. Simplelink library
simplelink.h - CC31xx/CC32xx Host Driver Implementation
Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com/

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

Neither the name of Texas Instruments Incorporated nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Blicode

Page 18 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

The WifiFunctions library can be found in folder
WorkPackage_3\myriad\libs\leon\WifiFunctions of EOT repository. An example
using this library can be found in WorkPackage_3\myriad\apps\wifi_example.

The documentation for the relevant code is in Annex 1.
-Conclusions and Future work

The implemented library WifiFunctions allows the user to manage all the
parameters of the CC3100 module of the EoT board, including the functions of
the Simplelink driver, and providing a set of functions which that reduces the
programming complexity of developing software for the EoT platform.

This module will be used in every task of the project which needs communication
between the EoT board and another device via WiFi. Currently it is used in other
applications of EoT as the video streaming application and the control software
tool.

Furthermore, the library allows to be expanded including new functionalities. This
fact is important for the following steps of the project, in which demonstrators
will develop new applications with new requirements that could require new
methods related to the WiFi management or configuration.

Page 19 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

8. CAMERA INTERFACE

Ilintroduction

To provide an easy-to-use interface to connect to the camera and retrieve
frames, a camera module has been developed on top of the more complex MDK
camera driver (CamGeneric module).

In the absence of the NanEye camera, this module uses one of the black and
white MIPI cameras in the development board (CAM_B1), reducing image size to
(480x256) (See Figure 7). Since the NanEye will be supported by the
CamGeneric module, changes will be added to this module but always retaining
the previous functionality with the devel board camera, so that the camera to
use is selected with, say, a parameter flag in the code at compile time.

40 .
oot CTRL oo CAM BookE o)

e . H'In..wo: 00 ROI:TEO
v\ BT G
N
MV 200060 SRl

L

" Figure 7. MIPI camera used for development

Using CamGeneric, the camera should be used according to the following
scenario:

Page 20 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Init

<

Start

)

Standby

Wakeup _/

Stop

Figure 8. Camera execution diagram

In this case, the camera cannot be started and stopped more than one time.
However its standby status can be used to simulate this behaviour and save
power. There are two standby configurations:

- HOT STANDBY: the sensor is deactivated but still configured. This standby type
is mostly used to save processor time by suspending the interrupts and is fast to
recover from (activation last less than 0.5 milliseconds)

- COLD STANDBY: Wakeup out of this state implies full sensor reconfiguration.
The wake up duration may last tens of milliseconds.

The EoT Camera module supports the HOT STANDBY option. In computer vision
applications, the camera should be active only when needed.

The camera interface provides frames in a simple format:

typedef struct frameElements

{
frameSpec spec;
unsigned char* pl; // Pointer to first image plane
unsigned char* p2; // Pointer to second image plane
unsigned char* p3; // Pointer to third image

} frameBuffer;

Where spec defines the type of frame (height, width, ...). These structures are
defined in file swcFrameTypes.h.

Since JPEG is one of the most used image compression standards, JPEG
compression support has been added to this module. The Control Mode
application (i.e. Pulga) and the RTSP streaming applications send the JPEG-
compressed image obtained from the camera.

Page 21 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

IlKnown issues

The Camera module operates using the I2C buses for the communication with
sensors. The I12C configuration function, BoardlInitialise, sets up all GPIOs and
performs the initialization of basic functions of the board and the external clock
generator. In addition, this module needs to configure the interrupts and the
interrupt service routine (ISR) to periodically update the new buffer where the
frame is stored.

The above aspects should be taken into account when using this module together
with module WifiFunctions. I2C buses should be initialised before starting the
WiFi configuration because WifiFunctions uses the I2C buses to send the nHIB
signal to the WiFi chip. The WifiFunctions I2C configuration does not affect the
previous I2C configuration of the Camera module. On the contrary, using
Boardlnitialise after initialising the WiFi chip drops the communication between
the main processor and the WiFi. With regard to the Camera ISR, notice that the
WiFi driver disables all interrupts during WiFi chip initialization. Therefore,
initialising the WiFi while the camera is capturing frames can block the interrupt
that updates the image buffer. This problem can be solved by calling the
init_camera method after initialising the WiFi chip.

The following steps show the order of instructions to use WifiFunctions and
Camera modules together without deadlocks:

1. The following lines should be added as part of the board initialization. A
good practice is to add them at the end of the initClocksAndMemory
function in the app_config.c file of the application.
s32 boardStatus;
boardStatus = Boardlnitialise(EXT_PLL_CFG_148 24 24MHZ);
if(boardStatus !'= B_SUCCESS ) {
printf("Error: board initialization failed with %d
status\n" ,boardStatus);
return -1;

}

2. Call generateAPFromProfileOnErrorDefault(0) to create an AP with the
default parameters.

3. Call init_camera() or other methods that call it in a new thread in order
to capture images.

4. Rest of the code.

Finally, the camera module has been used in applications running in the LeonOS
processor. This keeps the LeonRT processor off reducing the power consumption
of the device. In order to use the LeonRT processor for camera streaming
applications, synchronization mechanisms should be used to ensure the correct
sequence of initialization operations as described above.

Blunit tests

There are not specific tests for this module. However, two applications use it:
Pulga_Control_App and RTEMS_RTSP_Camera and Pulga_test includes a test for

Page 22 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

retrieving a camera snapshot. These applications can be found in folder
WorkPackage_3\myriad\ of EoT repository.

| £ EoT Control Mode Desktop Application [RSEEEN "

File Edit Help
f MQTT Client r Configuration rGet Camera Snapshot |

Get Snapshot

Figure 9. Camera frame retrieved from Pulga

& rtspi//192.168.1.1:8554/mjpej/2 - Reproductor multimedia VLC l ="LEL ﬂ

| Medio | Beproduccién  Audic  Video Subtitule  Herramientas  Ver  Ayuda

D
(0] m]ow) (E] el

= L =

Figure 10. RTSP video streaming

IlLicensing

The code used to develop the JPEG conversion functionality is based on the one
from:

Page 23 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Author: bkenwright@xbdev.net
URL: www.xbdev.net Date: 19-01-06

Blicode

The Camera code can be found in WorkPackage_3\myriad\libs\leon\Camera of
EoT repository.

The documentation for the relevant code is in Annex 2.
-Conclusions and Future work
A module for easily controlling the camera has been provided. This module is

supported by RTEMS and runs in LeonOS. Its functionalities have been used in
Pulga_Control_App and RTEMS_RTSP_Camera applications.

Page 24 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

9. VIDEO STREAMING

Blintroduction

The Real-Time Streaming Protocol (RTSP - RFC 2326) has been selected for
video streaming. RTSP is the most used protocol for video streaming from IP
cameras. This protocol establishes and controls either a single or several time-
synchronized streams of continuous media such as audio and video. It does not
typically deliver the continuous stream itself. For that task it relies on other
protocols such as RTP (RFC 3550).

As the RFC describes, the protocol supports the following operations:

e Retrieval of media from media server.
The client can request a presentation description via HTTP or some other
method. If the presentation is being multicast, the presentation description
contains the multicast addresses and ports to be used for the continuous
media. If the presentation is to be sent only to the client via unicast, the
client provides the destination for security reasons.

e Invitation of a media server to a conference.
A media server can be "invited" to join an existing conference, either to
play back media into the presentation or to record all or a subset of the
media in a presentation. This mode is useful for distributed teaching
applications. Several parties in the conference may take turns "pushing
the remote control buttons."

e Addition of media to an existing presentation.
Particularly for live presentations, it is useful if the server can tell the
client about additional media becoming available.

The first scenario has been implemented in EoT. An RTSP server is running in the
device and clients can connect to it and request video streaming.

RTSP is focused on the streaming control only. For that, different methods are
defined in the RFC. SETUP, PLAY, RECORD, PAUSE, and TEARDOWN are the
specific control methods while others are defined for setting different options of
the protocol: DESCRIBE, ANNOUNCE, GET_PARAMETER, OPTIONS, REDIRECT
and SET_PARAMETER.

Typically, an RTPS connection works as follows. While the server is running and
listening for incoming connections, the client starts the connection. Then RTSP
messages ask the server to start the streaming. The server answers with the
options of the stream and starts the RTP streaming. Now the client starts
receiving the media and can control the streaming status with some of the
control methods.

Page 25 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

BRTSP Server

Since the EoT RTSP only needs to support streaming and its status control, the
developed service implements only the most important features needed to work
in order to save memory, power and be more efficient.

The RTSP server controls connections and streaming using TCP sockets for the
communication with clients. It allows multi-client streaming. In this case, the
maximum number of clients is limited by the maximum number of different
sockets that the WiFi chip CC3100 can support. Those are the different options
implemented once the connection between the server and the client is
established:

- OPTIONS

- DESCRIBE
- PLAY

- SETUP

- TEARDOWN

9.2.1. RTSP Server Options

e OPTIONS request returns the request types the server can accept.

C->S: OPTIONS rtsp://192.168.1.1:8554 RTSP/1.0
CSeq: 2
User-Agent: LibVLC/2.1.5 (LIVE555 Streaming Media v2014.05.27)

S->C: RTSP/1.0 200 OK
CSeq: 2
Public: DESCRIBE, SETUP, TEARDOWN, PLAY, PAUSE

e DESCRIBE request includes an RTSP URL and the type of reply data that
the client can be handled.

C->S: DESCRIBE rtsp://192.168.1.1:8554 RTSP/1.0
CSeq: 3
User-Agent: LibVLC/2.1.5 (LIVE555 Streaming Media v2014.05.27)
Accept: application/sdp

S->C: RTSP/1.0 200 OK
CSeq: 3
Content-Base: rtsp://192.168.1.1:8554
Content-Type: application/sdp
Content-Length: 93

v=0

o=- 1191391529 1 IN IP4 192.168.1.1
S=

t=0 0

m=video O RTSP/AVP 26

c=IN IP4 0.0.0.0

e SETUP request specifies how a single media stream must be transported.
This must be done before a PLAY request.

Page 26 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

C->S: SETUP rtsp://192.168.1.1:8554 RTSP/1.0
CSeq: 4
User-Agent: LibVLC/2.1.5 (LIVE5S55 Streaming Media v2014.05.27)
Transport: RTP/AVP;unicast;interlaved=0-1

S->C: RTSP/1.0 200 OK
CSeq: 4
Transport: RTP/AVP;unicast;interlaved=0-1
Session: 805308858

e PLAY request asks for media streaming.

C->S: SETUP rtsp://192.168.1.1:8554 RTSP/1.0
CSeq: 5
Range: npt=0.000-
Session: 805308858

S->C: RTSP/1.0 200 OK
CSeq: 5
Session: 805308858
RTP-Info: url=rtsp://192.168.1.1:8554

e PAUSE request temporarily halts media streams until a PLAY request.

C->S: PAUSE rtsp://192.168.1.1:8554 RTSP/1.0
CSeq: 6
Session: 805308858

S->C: RTSP/1.0 200 OK
CSeq: 6
Session: 805308858

e TEARDOWN. It terminates the session (stops media streams and frees session data
on the server).

C->S: TEARDOWN rtsp://192.168.1.1:8554 RTSP/1.0
CSeq: 7
Session: 805308858

S->C: RTSP/1.0 200 OK
CSeq: 7

After receiving the PLAY message, the server starts the stream. The stream is
formed by JPEG images taken from the camera using the EoT Camera module
(JPEG-compressed video, RFC 2435). If the client wants to restart the stream
after a TEARDOWN request, a new connection has to be started.

Ilisupported Players
The EoT RTSP server is compatible with standard clients that allow video

streaming over TCP. Both RTSPPlayer for Android and VLC Player for PC
(Windows or Linux) have been tested.

Page 27 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

9.3.1. RTSPPlayer TCP configuration

In order to configure the Android app RTSPPlayer go to Settings (“Ajustes” in
Figure 11) and scroll down to RTSP tunnel option. Then choose TCP as shown in
the images.

™

B < Mis cdmaras

RTSP tunel

AUTO

<

Figure 11. RTSP Player TCP configuration

9.3.2. VLC Player TCP configuration.
To configure VLC Player to work with our server, open preferences in Tools menu

(Ctrl+P in Windows) and then in the Codecs tab check RTP over RTSP (TCP) as
shown in Figure 12.

Page 28 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Preferencias de entrada y cddecs

USCOTICHO00N BC0RIETSON POT NATTWAIe LESNBONaT

tivel de pastprocesamiento de calidad de video

Omisin de filtro de desbioquen en bisde H.264 | Ninguna
Selecoidn de preprogramacide y afinackin ultrafast
Selecodn de perfil y nivel 264 high
Urided dptica
Despostive Gptco predeterminada
Archivos
Carpeta o nombre de archa de grabscdn
| Precargar archivos MKV en ks misma carpata
Archiva AV1 dafiado o mcompleto Freguatar par actitn

Red
Politica de almacenamiento predeterminada | Normal

URL prowy HTTP

Transporte de amiskdn Lvesss WTTF (predaterminada) | @) TP sobre RTSF (TCF) |

Mosirar sjustes
@ Sencllo () Todo | Restaursr preferencias Gusrdar | | Cancedar

Figure 12. VLC TCP configuration

IllKnown issues

While it is common to use TCP for control and UDP for streaming, the EoT RTSP
server uses the same TCP socket for both tasks in order to allow for more clients
connected (8 instead of 4) and leave free sockets for other applications.

HEllunit tests

There are no automatic tests for testing the functionalities of this module. Unit
tests for this module would imply to develop an RTSP client. Instead, the RTSP
server application, RTEMS_RTSP_Camera in the of EoT repository can be tested
with VLC and RSP Player video players.

[ rspy/192.1681.1:85

|| Medic Reproduccion  Audio  Video Subtitulo  Herramientas Ver  Ayu

oeam I0ER0)
) e ) ()50 ez ] W EW EekE

Figure 13. RTSP streamng results with 2 clients

Blcode

Page 29 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

There is an example of how to use the RTSP server (RTEMS_RTSP_camera) in
the WorkPackage_3\myriad\apps folder of the EOT repository. This example
provides a RTSP server functionality running on RTEMS operating System and
uses the Camera module to obtain each frame.

The documentation for the relevant code is in Annex 3.
-Conclusions and Future work
The Real-Time Streaming Protocol (RTSP) has been implemented. The image

streaming format supported is JPEG-compressed video. The server has all the
basic capabilities of an RTSP server and supports streaming to multiple clients.

Page 30 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

10. INPUT BUTTONS/DIP SWITCHES

Ilintroduction

This module provides access to user input through push buttons and DIP
switches as well as control of user LEDs. Using this module, an application can
get minimal user input or signal application specific status. Furthermore, it
enables using the DIP switch to decide whether to boot into the control mode or

into the installed user app. The interface is fully documented through doxygen
comments.

DIP switches LEDs

Figure 14. Buttons, DIP switches and LEDs

Blunit tests

The functions of this module cannot be tested automatically, since they require
user input or feedback.

Blcode

The code can be found in the GitLab repository of the EoT project at the following
address: https://qgitlab.com/espiaran/EoT.

Page 31 29-02-2016


https://gitlab.com/espiaran/EoT

D3.3 Firmware Documentation H2020-643924-EoT

The specific module is available in “WorkPackage_3/myriad/libs/leon/LEDs”. It
has no external dependencies.

The documentation for the relevant code is in Annex 4.
Il conclusions and Future work

This module provides easy access to query the input buttons, the state of the
DIP switch and to control the LEDs. The interface is documented through
doxygen. A PDF version of the documentation is available as a separate file.

Although the module exposes all available functionality of the relevant hardware
components, one possible future optimization has been identified. In particular,
an alternative way of obtaining the state of the push button through the use of
interrupts and an interrupt handler could be added. This may provide improved
power efficiency in scenarios which make extended use of the push buttons.

Page 32 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

11. SD CARD MANAGEMENT

Ilintroduction

This module contains functions to provide access to files and directories on the
SD card. It supports file level encryption (only file contents, not metadata)
through the use of the EoT library “Crypto”. Furthermore, it can also be used to
mount and unmount the SD card. The module uses FAT32 as file system and
builds on top of file system functionality provided by RTEMS. The module’s
interface is documented through doxygen comments.

S AL

G (I,

MV200060 SEESEEEet

Figure 15. SD card slot

BllKnown issues

There are two known issues which prevent some SD cards from working in the
EoT device. The first issue is due to an incompatible formatting of the SD card.
Such cases can be resolved by following the formatting instructions in the
documentation of the Movidius MDK. The other issue appears to be related to the
specific SD card in use. This may possibly be caused either by a defective SD
card or a bug in RTEMS.

Blunit tests
The unit tests for this module can be found in the following folder of the EoT
repository: “WorkPackage_3/myriad/unittests/sdcard”. A properly formatted,

empty SD card is required for correct test execution. The instructions for
formatting the SD card can be found in the MDK documentation from Movidius.

Page 33 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

There are three groups of tests. The first group is concerned with testing the
mounting and unmounting functionality. The second group tests the functions for
accessing and manipulating directories, e.g. creating and deleting directories,
listing directory entries, etc. The unit tests will print out on the command line
whether they passed or failed. In case of failure, the names of the failed tests
will be printed out. Furthermore, there are unit test for the crypto module, which
can be found at “WorkPackage_3/myriad/unittests/crypto”.

BllLicensing

The unit tests use the embUnit, a unit testing library for embedded systems,
which uses the MIT/X Consortium License.

Blicode

The code can be found in the GitLab repository of the EoT project at the following
address: https://gitlab.com/espiaran/EoT.

The specific module is available in *“WorkPackage_3/myriad/libs/leon/SDCardIO”.
The unit testing library is available in "“WorkPackage_3/myriad/libs/leon/
embUnit”. RTEMS itself is included in the Movidius MDK and also available at
rtems.org.

The documentation for the relevant code is in Annexes 5 and 6.
Il conclusions and Future work

This module implements file and directory management functionality for the SD
card. Possible future improvements include a C++ interface (providing the same
functionality currently exposed through the C interface) as well as a possible
extension of the functionality to format the SD card appropriately in the EoT
device. The latter would make it easier and more convenient to use SD cards
with the EoT device.

Page 34 29-02-2016


https://gitlab.com/espiaran/EoT

D3.3 Firmware Documentation H2020-643924-EoT

12. BOOTLOADER

Ilintroduction

The bootloader’s task is to boot either into ‘control mode’ or to load an app,
which the user has previously installed on the EoT device. The choice what to
boot is made through the use of a DIP switch on the device. The bootloader
itself, the control mode software as well as the user apps are all stored in the
device’s flash memory. The bootloader uses two other EoT libraries: FlashIO and
ElfLoader. FlashIO provides a minimal filesystem for the flash memory to
manage the placement and retrieval of the individual applications (bootloader,
control mode and user apps) in the flash memory. Figure 16 shows the flash
memory layout that is used. The bootloader is always stored at the beginning of
the flash memory. This is necessary to ensure that the bootloader is started
when the system boots. The control mode executable is stored at a fixed location
after the bootloader. The remaining space can be used to store user apps or data
files. Such files are managed through the use of an index table at the end of the
flash memory. It stores information about the start and size of files stored in the
flash memory. The start of files is always aligned to the size of the flash memory
blocks.

N-1
Index table

segment start
aligned to block
size of flash
memory

User application

Control mode
(i.e. Pulga)

4 blocks reserved

Bootloader for bootloader

Figure 16. Flash memory layout

The ElfLoader library is used to parse ELF files and load them into memory (ELF
files are the binary application files). This way the bootloader can load and start
the execution of applications. The API of the ElfLoader and FlashIO module are
documented through the use of doxygen comments in the source code.

Page 35 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

IlKnown issues

There is a known bug in the original development board, which prevents the use
of the flash memory, while the WiFi module is connected. The issue will be
resolved in board Rev 1.

Blunit tests

Unit tests for accessing the flash memory through the use of the FlashIO module
can be found in the EoT repository in the following folder: “WorkPackage_3/
myriad/unittests/flash”. There are currently no unit tests for the bootloader code
and the ElfLoader module.

Blicode

The code can be found in the GitLab repository of the EoT project at the following
address: https://gitlab.com/espiaran/EoT.

The specific module is available in “WorkPackage_3/myriad/apps/bootloader”.
The FlashIO module is available in “WorkPackage_3/myriad/libs/leon/FlashIO”
and the ElfLoader in “WorkPackage_3/myriad/libs/leon/ElfLoader”. The unit
testing library is available in *“WorkPackage_3/myriad/libs/leon/embUnit”.

The documentation for the relevant code is in Annexes 7 and 8.

Il conclusions and Future work
This module provides the bootloader, which is used for launching control mode
and user apps. To that end, two supporting libraries have been implemented.

One handles access to files stored in the flash memory and the other the parsing
and loading of ELF executables. Currently, no further improvements are planned.

Page 36 29-02-2016


https://gitlab.com/espiaran/EoT

D3.3 Firmware Documentation H2020-643924-EoT

13. CONTROL MODE API, EMBEDDED SIDE

This module was described in deliverable D3.1.

Page 37 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

14. AUDIO INPUT & OUTPUT

Blintroduction

The audio module provides access to the audio chip for playback and recording of
audio signals. Furthermore, encoding and decoding of the Opus audio format is
supported (a codec is needed for audio streaming). Audio data can be read from
and written to files in the OGG container format. The audio chip is configured by
this module through the I2C interface and audio data is transmitted through the
I2S interface.

BllLicensing

Encoding and decoding of the Opus audio format is based on the reference
implementation of the codec. The OGG container format is processed using the
libogg reference implementation. Both implementations are covered under the
three-clause BSD license. Opus is furthermore covered by several patents which
are available under open-source compatible, royalty-free licenses. Details can be
found at: http://opus-codec.org/license/.

Blcode

The code can be found in the GitLab repository of the EoT project at the following
address: https://gitlab.com/espiaran/EoT.

The audio module is available in “WorkPackage_3/myriad/libs/leon/Audio”. An
example application showing its usage is available at “WorkPackage_3/myriad/
apps/audio”. At the time of writing, this example plays a .wav file stored on the
SD card. The audio module also supports audio recording to the SD card. The
libraries for the OGG container format and the Opus codec are available at
“WorkPackage_3/myriad/libs/leon/Ogg” and “WorkPackage_3/
myriad/libs/leon/Opus”.

The documentation for the relevant code is in Annex 9.

Il conclusions and Future work
This module implements reading and writing audio file, encoding and decoding
audio data as well as sending and receiving audio data from/to the audio chip.
Currently only a sampling rate of 48 kHz is supported. In future work, the

module may be extended to also handle lower sampling frequencies. Also, work
continues in order to provide a basic live input signal processing capability.

Page 38 29-02-2016


https://gitlab.com/espiaran/EoT

D3.3 Firmware Documentation H2020-643924-EoT

15. COMPUTER VISION: CNN

Blintroduction

Current methods for recognising subjects in images for video require a lot of
hand tuning and other results are quite labour intensive and lacking in
generality. Commonly used computer vision technique is histograms of oriented
gradients (HoG) which uses histograms of oriented gradients as “visual words”
and model the spatial distribution of these elements using a crude spatial
pyramid?. Such methods can recognize objects correctly without knowing exactly
where they are.

By contrast, Convolutional Neural Networks (CNNs) are rapidly replacing existing
machine-learning methods typified by HoG/SVM computer vision and machine
learning. The driving force behind this move towards deep networks has been
the huge gains in accuracy that have been made due to the introduction of CNNs
on benchmarks like ImageNet compared to the previous incumbent methods.
The broad deployment of CNNs has tracked the massive computational power
afforded by the introduction of Graphics Processing Units (GPUs).

Year |Place|Error (top-5) %|FLOPS |Weights |Watts [Secs

SuperVision 2012 16.40%

SuperVision |2012| 1| 15.30% | | | |

IS 2012 29.98%

ClariFai 2013 11.70%

ZF |2013| 3] 13.51%| | | |

NUS |2013| 2 12.95%| | | |
ClariFai |2013] 1| 11.20% | | | |

Deeper Vision (2014 5| 8.11%| | | |
Andrew Howard ~ |2014| 4| 0.10%| | | |

MSRA |2014| 3| 7.35%| | | |

VGG |2014| 2| 7.32%|30940.5|138344128|137.10|1109.96
GooglLeNet |2104| 1| 6.67%| 3426.4| 6990272|140.44| 399.12
Google |2015| | 4.82%| | | |
Microsoft |2015| 1| 4.94%| | | |
Deeplmage (Baidu)|2015| | 4.83%| | | |

As an evolutionary step in neural networks, they are becoming a key method in
applications, such as vision processing, handwriting recognition, robotics, and
automotive self-driving systems.

2 N. &. T. B. Dalal, “Histograms of oriented gradients for human detection,” in Computer
Vision and Pattern Recognition (CVPR), 2005.

Page 39 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Conceptually CNNs are similar to ordinary Neural Networks in the sense that they
are composed of a multitude of neurons with trainable weights and biases.
Neurons individually receive some inputs and perform dot products (optionally
followed by non-linearity). However, the whole network still introduces a single
differentiable score function from the raw input image pixels to the class scores.
Figure 17 shows the architecture of a CNN.

'\ reature maps rvu'lur m
c o,

\ mput feature maps !eature m.ans
32 x 32 28 x 28 14x14 N

\\! s |

5%5 m" \-V\., \.\
— o e — — — comvolmtion _ subsampung NUZ . N
feature extraction classification

Figure 17. Architecture of a convolutional neural network?

A CNN consists of several layers which can be of four types:

e Convolutional: This is the layer in the network that extracts feature maps
by convolving a few filters across the width and height of the input layer.
Every entry in the output then is interpreted as the output of a neuron
that looks at only a small region in the input. Every filter consists of a set
of learnable filters that are learnt through the back-propagation process.

Figure 18 shows the kernel convolution process.
{4x0)

Center element of the kemel is placed over the Eg : g;

source pixel. The source pixel is then replaced (0 x 0)
with a weighted sum of itself and nearby pixels. 0x1)

{0x1)
(0 x0)
{0 x1)
+(4x2)

Source pixel

Convolution kermnel
{emboss)

Mew pixel value (destination pixel) b

Figure 18. Kernel convolution?

3 https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/

Page 40 29-02-2016


https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/

D3.3 Firmware Documentation H2020-643924-EoT

¢ Max-Pooling: Each convolutional layer may be followed by a pooling
layer, which takes small rectangular blocks of the convolutional layer’s
output and subsamples it to produce a single output from that block. The
most popular pooling layer is max-pooling layers that takes the maximum
value of entries in the block. However, other operations such as taking the
average or a learned linear combination of elements in the block can be
used.

¢ RelLU: This rectifier function is an activation function defined as f(x) =
max(0,x), which can be used by neurons in the network. The rectifier
activation function is used instead of a linear activation function to add
non-linearity to the network. RelLu is used in the network mainly to its
efficiency in computation compared to more conventional activation

functions like the sigmoid f(x)z1 ! and hyperbolic tangent f(x) =

+exp(—x)
tanh(x), without making a significant difference to generalisation accuracy.

e Fully-Connected: After several convolutional and max pooling layers,
fully connected layers are applied. Similar to ordinary Neural Networks and as it
comes from its name, each neuron in this layer is connected to all neurons in the
previous layer.

The most common architectures in the field of Convolutional Networks:

e LeNet. Yann LeCun developed the first successful applications of CNNs
in the 1990's. Of these, the best known is the LeNet architecture that
was used to read zip codes, digits, etc. Figure 19 shows this network
applied to digit classification.

C3: f. maps 16@10x10
INPUT C1: feature maps 34 f. maps 16@5x5
2 52 1. maps

32¢32
B@14x14

|
| | Fullcnnrlhecu'on ‘ Gaussian conneclions

Convolutions Subsampling Comvolutions  Subsampling Full connection

Figure 19. Architecture of LeNet®

e AlexNet. The first work that popularized CNNs in Computer Vision was
AlexNet®. AlexNet (Figure 20) was submitted to the ImageNet ILSVRC

4

https://developer.apple.com/library/ios/documentation/Performance/Conceptual/vimage/ConvolutionOperations/
ConvolutionOperations.html

5Y. B. L. B. Y. & H. P. LeCun, “Gradient-based learning applied to document
recognition,” in Proceedings of the IEEE 86, no. 11, 1998.

Page 41 29-02-2016


http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://www.image-net.org/challenges/LSVRC/2014/
https://developer.apple.com/library/ios/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
https://developer.apple.com/library/ios/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html

D3.3 Firmware Documentation H2020-643924-EoT

24\ll¢iriq Max 25 Max pooling
Uof 4 pooling pooling

challenge in 2012 and significantly outperformed the second runner-up
(top 5 error of 16% compared to runner-up with 26% error). The
Network had a similar architecture basic as LeNet, but was deeper,
bigger, and featured Convolutional Layers stacked on top of each other
(previously it was common to only have a single CONV layer
immediately followed by a POOL layer).

157 192 128 204¢ oag \dense

|13 13 dense | [dense

s 1 1 1600
192 192 128 Max

204¢ 2048

48

Figure 20. An illustration of the architecture of AlexNet CNN

ZF Net. The ILSVRC 2013 winner was a CNN from Matthew Zeiler and
Rob Fergus. It became known as the ZF Net’. It was an improvement
on AlexNet by tweaking the architecture hyper-parameters, in particular
by expanding the size of the middle convolutional layers. Figure 21
shows the architecture of 8-layer convnet model. A 224 by 224 crop of
an image (with 3 colour planes) is presented as the input. This is
convolved with 96 different 1st layer filters (red), each of size 7 by 7,
using a stride of 2 in both x and y. The resulting feature maps are then:
(i) passed through a rectified linear function (not shown), (ii) pooled
(max within 3x3 regions, using stride 2) and (iii) contrast normalized
across feature maps to give 96 different 55 by 55 element feature
maps. Similar operations are repeated in layers 2,3,4,5. The last two
layers are fully connected, taking features from the top convolutional
layer as input in vector form (6 - 6 - 256 = 9216 dimensions). The final
layer is a C-way softmax function, C being the number of classes. All
filters and feature maps are square in shape.

6 A. 1. S. a. G. E. H. Krizhevsky, “Imagenet classification with deep convolutional neural
networks,” in In Advances in neural information processing systems, 2012.

7 M. D. a. R. F. Zeiler, “Visualizing and understanding convolutional networks,” in
Computer vision—ECCV, 2014.

Page 42

29-02-2016


http://www.image-net.org/challenges/LSVRC/2014/
http://arxiv.org/abs/1311.2901

D3.3 Firmware Documentation H2020-643924-EoT

image size 224 110 26 13 13 13 i -
filter size 7 ¢'3 J, 3
1 w384 1 w384 256
\2‘56 ) N N
stride 2 L 5?.6 3x3 may] 3x3 max C
3x3 max pool| | contras Foo! contrast pool 4096 4096 class
i siride 2] [norm. stride 2 units| | units| | softmax
" @3 P 2
Input Image ] '\236 36 = -
Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer? Output
Figure 21. ZF Net architecture
e GooglLeNet. The ILSVRC 2014 winner was a Convolutional Network

=Rk

from Szegedy et al. from Google®. Its main contribution was the
development of an Inception Module that dramatically reduced the
number of parameters in the network (4M, compared to AlexNet with
60M).

[

9 B .
]

N [ N

=) 52

Figure 22. GoogleNet architecture

VGGNet. The runner-up in ILSVRC 2014 was the network from Karen
Simonyan and Andrew Zisserman that became known as the VGGNet®.
Its main contribution was in showing that the depth of the network is
a critical component for good performance. Their final best
network contains 16 CONV/FC layers and, appealingly, features an
extremely homogeneous architecture that only performs 3x3
convolutions and 2x2 pooling from the beginning to the end. It was
later found that despite its slightly weaker classification performance,
the VGG ConvNet features outperform those of GooglLeNet in multiple
transfer learning tasks. Hence, the VGG network is currently the
most preferred choice in the community when extracting CNN
features from images. In particular, their pretrained model is
available for plug and play use in Caffe. A downside of the VGGNet is

8 C. W. L Y. J.P.S.S. R.D. A, D. E. V. V. a. A. R. Szegedy, “Going deeper with
convolutions,” in IEEE Conference on Computer Vision and Pattern Recognition, 2015.
% http://www.robots.ox.ac.uk/~vgg/research/very deep/

Page 43

29-02-2016


http://www.robots.ox.ac.uk/%7Evgg/research/very_deep/
http://www.robots.ox.ac.uk/%7Evgg/research/very_deep/
http://www.robots.ox.ac.uk/%7Evgg/research/very_deep/

D3.3 Firmware Documentation H2020-643924-EoT

that it is more expensive to evaluate and uses a lot more
memory and parameters (140M).

-Movidius Fathom CNN framework

The idea behind the Movidius Fathom (™) framework is to take an existing
trained network from a CNN framework like Caffe, Torch7 or TensorFlow and
translate and adapt it for use with a Movidius Myriad device. In this way, the
current design flows used by deep-learning data-scientists to develop networks
are unchanged and they can continue to use the flows, datasets and associated
scripts they have used historically without modification to quickly and easily port
the networks trained in the cloud on GPUs to the Myriad embedded platform as
shown below. Fathom takes a pre-trained network does XML from Caffe and
converted to run on Myriad2.

DNN
Model
Using Caffe

framework

Figure 23. Movidius Tool converts into DNN using Conv/MatMul libraries

Optimized for
Myriad 2

The Fathom framework and enabling Tensor high performance CNN libraries
integrate with the rest of the MDK as shown below.

The Fathom framework builds on top of the mvTensor library which offers highly
efficient 3D/4D convolution optimised for the following use-cases initially:
3x3s1xN, 3x3s2xN, 5x5s1xN, b5x5s2xN, 5x5s3xN. These small stride
convolutions are supported in Version 1.0 and are required by GoogleNet. The
library uses direct methods and matrix multiplication (mvMatMul) and supports
both fp32, fpl6 and 8-bit operations sustaining up to 80 GFLOPs at half
precision.

Page 44 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Camera Development Kit [CDK)

. Mlact Asicn Sok C uktewm Camssda
_ Fom——r
Unified Soiftwars Framsaorio Migvidius Pariner
Seraor B Workflow Management Applications

MoviToolks

Eclipse IDE

T+, LAVMI Compiler

WiulT-¢are Debugges

Figure 24. Movidius MDK including Fathom and Tensor CNN support

The initial version 1.0 release of the library is optimised for GoogLeNet execution
with high performance and low power by optimally laying out the data and
weights in the shared CMX memory with a goal of 15fps operation at less than
the maximum TDP of 1.2W moving to 25-30fps over the longer term by
leveraging 5x5 convolution hardware and reduced precision operations supported
by Myriad2 hardware. As part of the roadmap the intention is to also support
newer deep-learning frameworks like TensorFlow.

IlMvTensor Implementation Details

Multi-channel spatial convolutions: This function satisfies the following
requirements:

Input: a volume of size W1xH1xD1.

Hyper-parameters:

o number of filters K,

o filters spatial extent F,

o stride S,

o amount of zero padding P.

Output: a volume of size W2xH2xD2 where:

o W2=(W1-F+2P)/S+1

o H2=(H1-F+2P)/S+1 (i.e. width and height are computed equally by symmetry)
o D2=K

With parameter sharing, F-F-D1 weights per filter, a total of (F-F-D1)-K weights
and K biases.

Page 45 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

o The d-th depth slice of output (of size W2xH2) is the result of performing a valid
convolution of the d-th filter over the input volume with a stride of S, and then
offset by d-th bias.

e A common setting of the hyper-parameters is F=3, S=1, P=1.

o Prefer a stack of small filter CONV to one large receptive field CONV layer.
Suppose that you stack three 3x3 CONV layers on top of each other (with non-
linearities in between, of course). In this arrangement, each neuron on the first
CONYV layer has a 3x3 view of the input volume. A neuron on the second CONV
layer has a 3x3 view of the first CONV layer, and hence by extension a 5x5 view
of the input volume. Similarly, a neuron on the third CONV layer has a 3x3 view
of the 2nd CONV layer, and hence a 7x7 view of the input volume. Suppose that
instead of these three layers of 3x3 CONV, we only wanted to use a single
CONV layer with 7x7 receptive fields. These neurons would have a receptive
field size of the input volume that is identical in spatial extent (7x7), but with
several disadvantages.

e The neurons would be computing a linear function over the input, while the three
stacks of CONV layers contain nonlinearities that make their features more
expressive.

o If we suppose that all the volumes have C channels, then it can be seen that the
single 7x7 CONV layer would contain Cx(7x7xC)=49C. parameters, while the
three 3x3 CONV layers would only contain 3x(Cx(3x3xC))=27C. parameters.
Intuitively, stacking CONV layers with tiny filters as opposed to having one CONV
layer with big filters allows us to express more powerful features of the input, and
with fewer parameters.

e As a practical disadvantage, we might need more memory to hold all the
intermediate CONV layer results if we plan to do backpropagation.

Common rules of thumb for convolution function: The CONV should be using
small filters (e.g. 3x3 or at most 5x5), using a stride of S=1, and crucially, padding
the input volume with zeros in such way that the CONV layer does not alter the
spatial dimensions of the input. That is, when F=3, then using P=1 will retain the
original size of the input. When F=5, P=2. For a general F, it can be seen that
P=(F-1)/2 preserves the input size. If you must use bigger filter sizes (such as
7X7 or s0), it is only common to see this on the very first conv layer that is looking
at the input image.

Max-pooling: It reduces the spatial size of the input, the amount of parameters, and
computation in the network, by operating independently on every depth slice of
the input using the Max or Average operations. The most common form of
pooling is with size of 2x2 with a stride of 2, discarding 75% of the activations.
Max and Average operations take a max or average over 4 numbers,
respectively. The depth dimension remains unchanged. More generally, the
pooling:

e Input: a volume of size W1xH1xD1.

e Hyper-parameters:

o their spatial extent F

Page 46 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

o strideS

Output: a volume of size W2xH2xD2, where:
o W2=(W1-F)/S+1

o H2=(H1-F)/S+1

o D2=D1

e Zero parameters (it computes a fixed function of the input).

e Not common to use zero-padding for Pooling layers.

e Two commonly seen variations of the max pooling: pooling with F=3, S=2 (also
called overlapping pooling), and more commonly pooling with F=2, S=2.

e Pooling sizes with larger receptive fields are too destructive.

e Average pooling was often used historically but has recently fallen out of favour
compared to the max pooling operation, which has been shown to work better in
practice.

ReLU activation operations: It applies an elementwise activation nonlinear function,
such as the max(0,x) thresholding at zero. This operation leaves the size of the
input volume unchanged.

BlGoogleNet Example

In order to leverage their ability to learn complex functions, large amounts of
data are required for training. Training a large convolutional network to produce
state-of-the-art results can take weeks, even when using modern GPUs.
Producing labels using a trained network can also be costly when dealing with
web-scale datasets. These all make it more challenging to implement CNN for
embedded systems.

The embedded system considered is Myriad2 with 12 x SHAVE VLIW vector
processors and 2 x RISC processors. This section describes a specification of the
GoogleNet Network on the Movidius Myriad MA2x50 family of processors. It
involves two libraries: MvMatMul and MvTensor.

15.4.1. MvMatMul Library

This library is going to provide lower power, high throughput of matrix
multiplication. Core operation is: C = B*A + C (see Figure 25). In CNN these
matrices would be:

B Weight matrix

A Activation Matrix
C Bias Matrix and also result

Page 47 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

n
k - -
2 » '
o .-
4 C
X
Y
Y

Figure 25. Core operation in MvMatMul Library

15.4.2. MvTensor Library
MvTensor is a library and framework for running tensor math operations

efficiently on myriad family silicon. It comprises:

e Leon Runtime.

e SHAVE Code.

o Efficient SHAVE kernels for specific tensor/convolution operations.
Feature sets: it has the following feature sets:

e Run Kx3D Convolutions

e Linear scaling to across 1,2,3, 4, ..., 12 SHAVEs.

e Integrated DMA and data scheduling
0 taps, weights, activations in CMX or DDR.

e Support accumulation into output bias buffer.
e Support inline ReLu and pooling prior to output.

Supported 3D Convolutions: The supported 3D Convolutions are as:

e 3x3s1xN
o 3x3s2xN
e 5x5s1xN
o 5x5s2xN
e 5x5s3xN
e 7x7s1xN
o 7x7s2xN
e 7x7s3xN

o Where N is the number of channels and is 1,2,3 or a multiple of 8.
3D Convolution — Terminology:

Page 48 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

e Feature map: an individual ‘image’ or 2D slice of CNN. Typically, a simple CNN
stage will generate K output feature maps from C input feature maps. Feature
maps are often called channels.

e Feature - a feature is computed by using a convolution kernel on an input feature
map. For example, for a 3x3 convolution layer we say that the feature width is 3
and feature height is 3.

Parameters: The parameters involved in this library are:
e C input maps.
e K output maps

Fh Feature Height (i.e. kernel width)

e Fw Features Width (i.e. kernel height)

e X feature map width
e Y feature map height

Examples:
e 2D Convolution over image
This is not required of library but good as example:
foreach X in mapWidth
foreach Y in mapHeight
output[X,Y] = conv2D(input[X,Y], taps)
e 3D Convolution over C input feature maps (CNN usecase)
foreach C in numlnputMaps
foreach X in mapWidth
foreach Y in mapHeight
output[X,Y] += conv2D(input[X,Y,C], taps[C])
e Kx3D Convolution to get K output maps from C input maps (CNN usecase)
Conceptually
consider input as 3d Volume Cx X x Y
consider output as 3d Volume Kx X xY
consider convolution filter as having C x 3 x 3 taps
Example code:
foreach K in numOutputMaps
foreach C in numlnputMaps
foreach X in mapWidth
foreach Y in mapHeight
output[X,Y,K] += conv2D(input[X,Y,C], taps[K,Cl)
Notes:
O note that we use different taps for each different layer
O Ocassionally this gets called 4D convolution but it’s really just a 3D convolution called K
times.

15.4.3. MvTensor API Description

The purpose of the MvTensor API (Application Programming Interface) is to
standardise communications between the Fathom framework and the underlying
linear algebra and non-linear function libraries it relies upon which are
implemented in MvTensor. The intent of this abstraction is to allow the Fathom
framework to be developed independently of the mvTensor implementation
details. This is particularly important as the first implementation of mvTensor will
be very much tuned to the implementation of GooglLeNet and based upon
existing fp32 and fp16 GEMM, GEMV and RelLU kernels that have already been

Page 49 29-02-2016



D3.3 Firmware Documentation

H2020-643924-EoT

implemented for an initial port of LeNet to Myriad2. Abstracting via an API means
that as other implementations of the underlying layers that take advantage of
hardware acceleration, lower precision arithmetic, coefficient compression etc.
are introduced they can be easily taken of advantage of without having to
change the xml format used by Fathom as input meaning that existing trained
networks can rapidly take advantage of advances in the underlying optimised

hardware and software.

15.4.3.1.

Scope:

e A single call to mvTensor does one operation of compute across
multiple SHAVE processors and schedules data.

e CAPIL

15.4.3.2.

Table 1.1 MvTensor Parameters.

Parameters
Table 1.1 summarizes the parameters required for MvTensor

type Name Comment
genData input input data structure
genData output output data structure
genData weights data structure for weights
genData accumulation | optionally required buffer when precision is different
enum preOperation placeholder for now;
enum op operation type:
kConv1x1
kConv3x3,
kConv5x5,
kConv7x7,
kMaxPool3x3
int opStrideX operation stride in X direction
int opStrideY operation stride in Y direction
enum postOp kRelu,
kReluMaxPool3x3,
kNone
int postOpStrideX | post operation stride in X direction
int postOpStrideY | post operation stride in Y direction
tMyriadResources | firstProcessor | Myriad resources allocated
e First SHAVE
e Last SHAVE
e DMA Link agent
tDebug Debug struct. minimally store layer duration (ms) and error

Page 50

29-02-2016




D3.3 Firmware Documentation H2020-643924-EoT

message string
float ms;
chart debugmsg[120];

The data

15.4.3.3.

enData Container

structure is described in Table 1.2.

Table 1.2 Data Structure.

type | Name Comment
void* | data data pointer
int dimX elements in X dimension
int dimY elements in Y dimension
int dimz elements in Z dimension
int dimXStride Stride is start of one line to start of next in elements
int dimYStride Stride is start of one line to start of next in elements
int dimZStride Stride is start of one line to start of next in elements
enum | datatype fp16, u8f, int
enum | padStyle zeros
enum | storageOrder | orderYXZ,
orderZYX,
orderYZX,
15.4.3.4. Use-cases for storage

This section shows how the specified storage dimensions’ map to data structures
frequently used in CNN usecase. If a simple CNN stage may be described using
the following parameters:

C - input feature maps (channels)

K - output feature maps

X - columns in input feature map

Y - rows in input feature map

FW - Hpixels/columns spanned by the feature we are computing
FH - Vpixels/rows spanned by the feature we are computing

Then they shall be mapped onto the storage structure as shown in Table 1.3.

Page 51

Table 1.3: Data Storage

Storage Dimension | Activations | Weights | Output

X

X {FH*FW} | X

Y

Y Cc Y

29-02-2016




D3.3 Firmware Documentation

H2020-643924-EoT

z

C

K

K

typical storage order | orderYXZ

orderZYX

orderYXZ

15.4.3.5.

Addressing worked examples

Table 1.4 describes how data are addressed for different storage orders.

Table 1.4: Addressing worked examples

Storage Order

Address of element x,y,z

orderYXZ
(Channel Minor)

data+(y*dimXStride*dimZStride+x*dimZStride + z)*sizeof(element)

orderZYX
(column minor)

data+(z*dimYStride*dimXStride+y*dimXStride + x)*sizeof(element)

15.4.4.

15.4.4.1.

Fathom Data Structure

Debug messages table.
#include <mvTensor.h>

Data Fields

double ms: Duration of the mvTensor call (in ms)

t MvTensorDebugInfo Struct Reference

char debugMsg [MV_TENSOR_DBG_MSG_SIZE]: Debug messages.

Field Documentation: generated from the following file: mvTensor.h

char t_MvTensorDebuglnfo::debugMsg[MV_TENSOR_DBG_MSG_SIZE]:
Debug messages.
double t_MvTensorDebuglnfo::ms Duration of the mvTensor call (in ms).

15.4.4.2.

Basic data structure.
#include <mvTensor.h>

Data Fields

void = data:

Data Pointer.

int dimX: Elements in x-dimension.
int dimY: Elements in y-dimension.
int dimZ: Elements in z-dimension.

int dimXStride: Stride (in bytes) in the x-direction.
int dimYStride: Stride (in bytes) in the y-direction.
int dimZStride: Stride (in bytes) in the z-direction.

t_MvTensorDataType datatype: Data type.
t_MvTensorPaddStyle paddStyle: Padding style.

Page 52

t mvTensorGenData Struct Reference

29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

e t MvTensorStorageOrder storageOrder: Data storage order.

Field Documentation: generated from the following file “mvTensor.h”

e void+ t_mvTensorGenData::data: Data Pointer.
t_MvTensorDataType t_mvTensorGenData::datatype: Data type.
int t_mvTensorGenData::dimX: Elements in x-dimension.
int t_mvTensorGenData::dimXStride: Stride (in bytes) in the x-direction.
int t_mvTensorGenData::dimY: Elements in y-dimension.
int t_mvTensorGenData::dimYStride: Stride (in bytes) in the y-direction.
int t_mvTensorGenData::dimZ: Elements in z-dimension.
int t_mvTensorGenData::dimZStride: Stride (in bytes) in the z-direction.
t_MvTensorPaddStyle t_mvTensorGenData::paddStyle: Padding style.
t_MvTensorStorageOrder t_mvTensorGenData::storageOrder:Data storage
order.

15.4.4.3. t MvTensorMyriadResources Struct
Reference

Myriad resources structure.
#include <mvTensor.h>

Data Fields
e int firstShave: Index of the first SHAVE.
e int lastShave: Index of the last SHAVE.
e int dmaLinkAgent: Link to the Direct Memory Access Agent.

Detailed Description
Myriad resources structure.

Field Documentation: generated from the following file “mvTensor.h:
e int t_MvTensorMyriadResources::dmalLinkAgent Link to the Direct Memory
Access Agent.
e intt MvTensorMyriadResources::firstShave Index of the first SHAVE.
e int t_MvTensorMyriadResources::lastShave Index of the last SHAVE.

15.4.4.4. t MvTensorParam Struct Reference

MvTensor global parameters structure.
#include <mvTensor.h>

Data Fields
e t mvTensorGenData input: Input data structure: pointer to input data,
width, height, horizontal and vertical stride, data type and storage order.
e t mvTensorGenData output: Output data structure: same type of
information as for input.
e t mvTensorGenData weights: Weights data structure: same type of
information as for input.

Page 53 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

t_mvTensorGenData accumulation: Intermediate data structure, needed
only when operation needs to be done on another data type then the
input/output are.

u32 preOperation: Pre-processing operation: TODO create enum type for
this field.

t_MvTensorOp op: Filtering operation: Convoltion, max-pooling.

int opStrideX: Operation stride in the X-direction.

int opStrideY: Operation stride in the Y-direction.

t_MvTensorPostOp postop: Post-operation: Relu.

int postOpStrideX: Stride in the X-direction for the post-processing
operation.

int postOpStrideY: Stride in the Y-direction for the post-processing
operation.

t_MvTensorMyriadResources myriadResources: Myriad resources
structure: first shave, last shave and DMA link agent.
t_MvTensorDebuglnfo debuglnfo: Debug table: debug mesage and time of
mvTensor function call (in ms)

Detailed Description
MvTensor global parameters structure.

Field Documentation: generated from the following file “mvTensor _h”

t_mvTensorGenData t_MvTensorParam::accumulation Intermediate data
structure: needed only when operation needs to be done on another data
type then the input/output are.

t_MvTensorDebuglnfo t_MvTensorParam::debuglnfo Debug table: debug
mesage and time of mvTensor function call (in ms)

t_mvTensorGenData t_MvTensorParam::input Input data structure:
pointer to input data, width, height, horizontal and vertical stride, data
type and storage order.

t_MvTensorMyriadResources t_MvTensorParam::myriadResources Myriad
resources structure: first shave, last shave and DMA link agent.
t_MvTensorOp t_MvTensorParam::op Filtering operation: Convoltion, max-
pooling.

int t_MvTensorParam::opStrideX Operation stride in the X-direction.

int t_MvTensorParam::opStrideY Operation stride in the Y-direction.
t_mvTensorGenData t_MvTensorParam::output Output data structure:
same type of information as for input.

t_MvTensorPostOp t_MvTensorParam::postOp Post-operation: Relu.

int t_MvTensorParam::postOpStrideX Stride in the X-direction for the post-
processing operation.

int t_MvTensorParam::postOpStrideY Stride in the Y-direction for the post-
processing operation.

u32 t_MvTensorParam::preOperation Pre-processing operation: TODO
create enum type for this field.

t_mvTensorGenData t_MvTensorParam::weights Weights data structure:
same type of information as for input.

15.4.5. mvTensor.h File Reference

Page 54 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

MvTensor API - interface to MvTensor compute library.
#include <mv_types._h>

Data Structures
e struct t_mvTensorGenData: Basic data structure.
e struct t_MvTensorMyriadResources: Myriad resources structure.
e struct t_MvTensorDebuglInfo: Debug messages table.
e struct t_MvTensorParam: MvTensor global parameters structure.

Macros
#define MV_TENSOR_DBG_MSG_SIZE 120: Message size.

Enumerations

e enum t_MvTensorDataType {t_fpl6, t _u8f, t_int}: MvTensor data type
structure.

e enum t_MvTensorPaddStyle {zero}: Padding style.

e enum t_MvTensorStorageOrder <{orderYXZ, orderZYX, orderYZX}:
MvTensor data storage order options.

e enum t_MvTensorOp {kConvlx1l, kConv3x3, kConv5x5, kConv7x7,

kMaxPool3x3}: Filtering types.

e enum t_MvTensorPostOp {kRelu, kReluMaxPool3x3, kNone}: Post-

processing operations.

Functions
e void mvTensor (t_MvTensorParam smvTensorParam): mvTensor main
function.
e static u32 checkForErrors (t_MvTensorParam smvTensorParam): Debug
function.
15.4.5.1. MvTensor API - interface to MvTensor

compute library.

Macro Definition Documentation
#define MV_TENSOR_DBG_MSG_SIZE 120: Message size.

Enumeration Type Documentation
enum t_MvTensorDataType: MvTensor data type structure.
Enumerator:

t_fp16 half precision floating point

t_u8f Unsigned byte.

t_int Integer.

enum t_MvTensorOp: Filtering types.
Enumerator:
kConv1ix1 1x1 Convolution
kConv3x3 3x3 Convolution
kConv5x5 5x5 Convolution
kConv7x7 7x7 Convolution
kMaxPool3x33x3 Max-Pooling

enum t_MvTensorPaddStyle: Padding style.

Page 55 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Enumerator:
zero Zero-padding.

enum t_MvTensorPostOp: Post-processing operations.

Enumerator:
kRelu rectified linear unit (Relu) rectifier
kReluMaxPool3x3 Relu rectifier and 3x3 max-pooling.
kNone No post operation.

enum t_MvTensorStorageOrder: MvTensor data storage order options.
Enumerator:

orderYXZ Optionl: YXZ channel minor.

orderZYX  Option2: ZYX column minor.

orderYZX  Option3: YZX.

Function Documentation
static u32 checkForErrors (t_MvTensorParam « mvTensorParam) [static]

Debug function: Transformation matrix (3x2) is obtained from a rotation degree

and translation coefficients

Parameters

in mvTensor- | - pointer to MvTensor data structure
Param

Returns
u32 - 0 if there were no errors found / 1 if there is at least an error

void mvTensor (t_MvTensorParam =« mvTensorParam)
mvTensor main function: Parameters

in mvTensor- | pointer to a structure that holds information about:
Param
« Input
« Qutput
* Weights

¢ Accumulation

* Pre-operation type

* Operation

* Operation stride in the X-direction

* Operation stride in the Y-direction

* Post-operation type

* Post-operation stride in the X-direction
* Post-operation stride in the Y-direction
* Myriad used resources

* Debug informations

Returns void

Page 56 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

16. COMPUTER VISION: COLOUR HISTOGRAM
MATCHING

Blintroduction

Colour histogram matching is a simple method for comparing the visual similarity
of images or image regions. Despite its simplicity, it can be quite effective,
especially if an appropriate colour space is chosen. The process consists of two
parts. First, the colour histograms of the images or image regions, which shall be
compared, are computed. Then the matching score is computed based on a
histogram distance metric. The histogram matching module implements the
computation of the colour histograms as well as different distance metrics to
compute the distance score. Currently, the histogram intersection, the Hellinger
distance and the earth mover’s distance are implemented.

Ellunit tests

Unit tests for histogram extraction and matching have been implemented and are
available at “WorkPackage_3/myriad/unittests/HistogramMatching”.

Blicode

The code can be found in the GitLab repository of the EoT project at the following
address: https://gitlab.com/espiaran/EoT.

The histogram matching module is available in “WorkPackage_3/myriad/libs/
leon/HistogramMatching”.

The documentation for the relevant code is in Annex 10.
-Conclusions and Future work

The histogram matching module implements the functionality to extract colour
histograms from images and to compare them with different distance metrics.

Page 57 29-02-2016


https://gitlab.com/espiaran/EoT

D3.3 Firmware Documentation H2020-643924-EoT

17. COMPUTER VISION: KEYPOINT MATCHING

Ilintroduction

The ability to detect and match keypoints in two different images is a
fundamental functionality in many computer vision algorithms. Algorithms
involving keypoint matching generally distinguish three different steps: feature
detection, feature description and feature matching. In feature detection, the
input image is searched for particular points with the following properties: the
same 3D point should be detected under various viewpoints, scale changes and
lighting conditions (repeatability) and the detected point should have a unique
visual signature (description). For this reason, keypoint detectors usually detect
points in an image with sufficient texture and corresponding to positions of high
frequency - usually referred to as corners. A feature descriptor is an algorithm
that computes the signature of a specific point in the image based on its visual
appearance. The desirable properties of a descriptor are uniqueness of the
description and invariance of the description under various changes (scale,
brightness, rotation etc.). The descriptor itself is usually represented as a fixed-
size vector of real numbers, but recent descriptors rather produce binary codes
to increase the efficiency of the matching process. Feature matching amounts
to the computation of a distance between feature descriptors. The distance must
be chosen such that the difference between descriptors of the same 3D point
seen under various conditions is generally small, whereas the difference between
descriptors of different 3D points should generally be higher. In many cases the
L1 or L2 distance can be chosen, but more complex distance definitions are
possible.

In the last decades, many different algorithms for keypoint detection, description
and matching have been proposed with various properties. Recent developments
tend to favour fast detectors based on simple pixel intensity checks, as well as
binary descriptors, as they are more suited to a large number of keypoints while
keeping the matching process tractable. Among the recently published
algorithms, we decided to implement the BRISK keypoint algorithm?, as it
proved to be the most promising in terms of matching capabilities!. BRISK uses
a scale-space version of AGAST!? as keypoint detector, a binary code based on
difference of pixel pairs as descriptor, and a Hamming distance for matching.

10 | eutenegger, S., Chli, M., & Siegwart, R. Y. (2011, November). BRISK: Binary robust
invariant scalable keypoints. In Computer Vision (ICCV), 2011 IEEE International
Conference on (pp. 2548-2555).

1 Figat, J., Kornuta, T., & Kasprzak, W. (2014). Performance Evaluation of Binary
Descriptors of Local Features. In Computer Vision and Graphics (pp. 187-194). Springer
International Publishing.

12 E, Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger. Adaptive and generic
corner detection based on the accelerated segment test. In Proceedings of the European
Conference on Computer Vision (ECCV), 2010.

Page 58 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

17.1.1. Description of the API
The functionality “Keypoint matching” consists of three different modules:

e vector<keypoints> detectFeaturesBRISK (input_image): this
function takes an image as input, applies the BRISK detection method and
delivers the list of detected keypoints as simple 2D points with (x, y)
coordinates

e vector<descriptor> extractDescriptorBRISK (vector<keypoints>,
input_image): this function iterates over the list of keypoints provided as
input and computes a binary descriptor for each provided 2D point

e double computeHammingDistance(descriptorl, descriptor2): this

function computes the distance between two binary descriptors. It can be
used in an exhaustive matching algorithm

BllKnown issues
There are no known issues, currently.
Blunit tests

Unit tests will be created for each of the described functions with fixed input
parameters.

BllLicensing

An implementation of the described algorithm is available in OpenCV 3.0, which
is available under the three-clause BSD license.

Blicode

Some parts of the functionality exist in Movidius’ MDK: function
extractDescriptorBRISK is partially covered by a similar function in the MDK.

Il conclusions and Future work

This functionality has not been fully implemented yet and future work will focus
on the implementation of the missing parts.

Page 59 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

18. COMPUTER VISION: ROTATION-INVARIANT FACE
DETECTOR

Blintroduction

The main objective in this task is to create a rotation-invariant face detector. The
functionality will be initially achieved through the libccv library, which already
includes a face detector. Libccv's face detector is based on an
extension/modification of the well-known cascade of HAAR-like features with
Adaboost, but features significantly faster computation and similar accuracy?3.

To this effect, the application will load an image (initially from the SD Card), it
will perform two rotations (+25 degrees and -25 degrees) and it will try to detect
the faces in the image. If a face is detected in any image (input image or rotated
images) the application will confirm that a face has been detected.

18.1.1. Code structure

The detector is first developed in the LeonOS processor, and parts of it will be
increasingly offloaded to the SHAVEs in order to optimize speed. The first
computation that is offloaded to the SHAVEs is the rotation of the input image.
Two SHAVEs are used to perform the two required rotations. The next sequence
diagram shows the execution trace of its more important aspects.

Leon0S SDCard SHAVEQ SHAVES
T : :
| |
| |
initClocksAndMemary : :
|
:>‘ | |
|
|
|
|
|
|

|
SDCardRead

sweStartShaveCC " swcStartShaveCC _

? swcWaitShaves \\) ApplicationStart U) ApplicationStart
oSS =S=—==—==Z=z==Z=19 :::::::::::'_'_ _________________
rvShavel2CachePartition
FlushAndinvalidate

FaceDetection

> FaceDetection

FaceDetection

SDCardWrite

Figure 26. Face detection sequence diagram

13 Yotam Abramson, Bruno Steux, and Hicham Ghorayeb. 2007. Yet Even Faster (YEF)
real-time object detection. Int. J. Intell. Syst. Technol. Appl. 2, 2/3 (February 2007),
102-112. DOI=http://dx.doi.org/10.1504/1JISTA.2007.012476

Page 60 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

The following conclusions can be drawn from this sequence diagram:

e Read and write operations are performed by LeonOS processor.

e The swcStartShaveCC function is executed twice from LeonOS processor. This
function starts the execution, in each SHAVE, ApplicationStart function.

e The execution of code in the two SHAVEs is performed in parallel.

e Since the swcStartShaveCC function is synchronous, the swcwaitShaves function
must be executed by LeonOS processor.

e When SHAVE processors finish, the DrvShavelL2CachePartitionFlushAndInvalidate
function is executed.

e Finally, and sequentially, the three face detectors are executed by the
LeonOS processor and the results are written in the SD Card.

In order to facilitate the scalability of the application, so that it is easier to add
new SHAVEs processors, the following structures and arrays have been created.

To contain the information of the image (rotation, path, faces detected and the
image) we have the next structure:

struct data {
char path_dst [250]; //Path where the rotate image will be saved.
ccv_dense_matrix_t* img_dst; //Object ccv_dense_matrix. It contains all
information relative
// to the final image.
int degrees; //Degrees to rotate the original image
int n_faces_detected; //Number of faces detected by bbf algorithm.

};

There are as many structures as images to rotate. These structures are passed in
an array:

struct data array_attr[N_SHAVES] = {attrimgShaveO, attriImgShave3};

Likewise, the entrypoints and SHAVES used are stored in arrays.

u32 entryPoints[N_SHAVES] = {
(u32)&faceDetectionSHAVESO ApplicationStart,
(u32)&faceDetectionSHAVES3 ApplicationStart,

};

static swcShaveUnit_t SHAVE[N_SHAVES] = {0, 3};

This approach allows running, through loops, tasks associated to the SHAVEs. In
addition, it allows to add or to remove a SHAVE easily.

Two functions have been also developed to mark the faces detected. These
functions receive x and y coordinates, and one measurement. With this data, the
functions draw a square in the image. In addition, the color of the square can be
selected. One of them draws a square on a gray scale image. The other draws a
square on a color image.

void drawSquare (ccv_dense_matrix_t* img, int SquareX, int SquareY, int w,

u8 color);
void drawSquareColor (ccv_dense matrix_t* img, int SquareX, int Squarey,

Page 61 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

int w, u8 red, u8 green, u8 blue);

The ccv_perspective_transform function in libccv has been used to rotate. This method
takes a transformation matrix and applies it to an image. In this case, libccv uses
as coordinate origin the center of the image, so that the matrix used is:

Rotate about origin

cos® snB 0
-sinB cosB 0
0 0 1

(cos 6, -sin 0)

Figure 27. Rotation matrix

Since this function is executed by the SHAVEs processors, it has been necessary
to include a part of libccv in the source path of the SHAVEs. Specifically, the
dependences of that function have to be included and compiled for the SHAVE
processors. Figure 28 shows the dependencies.

ccv_cache_generate
R _signature

ccv_perspective transform I—b-l ccv_dense matrix_renew \\i‘

ccv_dense matrix_new I—p{ ccv_cache out

Figure 28. Face detection dependencies

The included files are the following:

ccv.h

ccv_internal.h

ccv_transform.c: This file contains ccv_perspective_transform function.
ccv_memory.c: This file contains ccv_dense_matrix_renew and ccv_dense_matrix_new
functions.

ccv_cache.c: This file contains ccv_cache generate signature Yy  ccv_cache out
functions.

shal.c

shal.h

Page 62 29-02-2016



D3.3 Firmware Documentation

H2020-643924-EoT

In file shal.c we included a new function. Originally, the arpa/inet.h library is
used by the libccv library. This library is used to change between little-endian and
big-endian, according to the endianness where the program is executed. Both
LeonOS and SHAVEs use little-endian architecture, so the CPU_swap u32 function
has been included in shal.c. In this way, the dependence has been removed.

18.1.2. Optimizations

Three optimizations have been made in this application:

The ccv_perspective_transform function is executed in the SHAVE processor.
When executed in the LeonOS processor, a rotation operation takes
between 0.5-0.6 seconds. Running the same operation in a SHAVE
processor, its time was reduced to 0.27-0.3 seconds, that is almost half
the time.

Parallelizing rotations is the second optimization. This is achieved by the
use of a number of SHAVEs running the same function. In this way, the
two rotations take between 0.27-0.3 seconds.

The last optimization is related to face detection. The parameters used by
libccv in face detection have been modified. The times obtained can be
seen in the following table. A window size of 90x90 and an interval of 3
have been selected. The window size is the minimum size of the object
that can be detected while the interval is the number of images between

the full size image and the half size one.

Page 63

Attribute
Window Size Interval Result | Time (Seconds)
5 1 detected 3,525186
4 1 detected 2,929454
24x24 3 1 detected 2,392324
2 2 detected 1,865266
1 1 detected 1,291151
5 1 detected 2,508927
4 1 detected 2,148596
30x30 3 1 detected 1,758166
2 1 detected 1,401181
1 1 detected 1,041092
5 1 detected 0,581443
4 1 detected 0,528538
70x70 3 1 detected 0,429481
2 1 detected 0,351539
1 1 detected 0,275125
5 1 detected 0,461311
4 1 detected 0,380983
90x90 3 1 detected 0,339476
2 2 detected 0,275154
1 1 detected 0,234491

29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

18.1.3. How To

This section discusses the problems encountered in the implementation of this
application and how they have been fixed. These problems are related to the use
of SHAVE processors, so this section could be used as guide for SHAVE
programming.

The example 004_SimpleCopyPlanes has been used as basis to develop this
application. This is because example 004_SimpleCopyPlanes covers the minimum
that rotation-invariant face detector application must have, this is, it must
execute from LeonQOS a function in a SHAVE processor.

Memory mapping

Initially, the example 004_SimpleCopyPlanes used the default memory mapping.
Due to the fact that our application uses the SD Card, the default mapping
produces the following error:

UART: Source O Internal 1 Error 2 0x2.

To fix it, a different memory mapping was included. This mapping can be found
in the following path: mdk/common/scripts/Id/myriad2_shave_slices.ldscript

In this mapping, for each SHAVE, its memory is divided in two slices, text and
data. When the ccv_perspective_transform function was included in the code executed
by SHAVEOQ, the size of text slice was greater than the assigned slot. This caused
an overlap between slices text and data of SHAVEO:

section S.shvO.cmx.data loaded at [0000000070008000,000000007004834f]
overlaps section S.shv0.cmx.text loaded at
[0000000070000000,0000000070010a03]

To fix this, it is necessary to change the beginning of the data slice for SHAVEO.
Originally, the data slice of SHAVEO had the next mapping.

. = 0x70008000;

S.shvO.cmx.data : {
*(.shv0.S_data*)
*(.shv0.S.rodata*)
*(.shv0.S._DATA sect¥®)
*(.shv0.S.__STACK__sect*)
*(.shv0.S.__static_data*)
*(.shv0.S.__ HEAP__sect¥*)
*(.shv0.S.__T__ *)
*(.Irt.shv0.S.data*)
*(.Irt_shv0.S.rodata*)

*(.Irt_shv0.S._ DATA__sect¥*)
*(.Irt.shv0.S.__STACK _sect¥*)
*(.Irt.shv0.S.__static_data*)
*(.Irt.shv0.S._HEAP__ sect*)
*(.Irt.shv0.S._ T *)

}

It was changed to:

Page 64 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

. = 0x70010d64;

S.shvO.cmx.data : {
*(.shv0.S_data*)
*(.shv0.S.rodata*)
*(.shv0.S._DATA sect¥®)
*(.shv0.S._STACK _sect®)
*(.shv0.S.__static_data*)
*(.shv0.S.__ HEAP__sect¥*)
*(.shv0.S._ T _*)
*(.Irt.shv0.S.data*)
*(.Irt.shv0.S.rodata*)

*(.Irt_shv0.S._ DATA__sect¥*)
*(.Irt.shv0.S.__STACK _sect¥*)
*(.Irt.shv0.S.__static_data¥*)
*(.Irt.shv0.S._HEAP__ sect*)
*(.Irt.shvO.S._ T _*)

}

Running the application, moviDebug informs of load sections, its memory
positions and its size. In this case, the following image shows it.

Figure 29. Memory positions and size

As can be seen, data slice of SHAVEO starts in the position 0x70010D68 and it
allocates 262992 bytes. This means that SHAVE1 and SHAVE2 cannot be used
because it will produce an overlap between data slice of SHAVEO and slices of
SHAVE1l and SHAVE2.

In this scenario, if either SHAVE1 or SHAVE2 is used, the following error will
appear:

section S.shvl.cmx.text Jloaded at [0000000070020000,0000000070030a03]
overlaps section S.shvO.cmx.data loaded at
[0000000070010d68,00000000700510b7]

With the purpose of avoiding an overlap between SHAVEO and SHAVE1l or
SHAVE2, SHAVE3 has been used.

As with the SHAVEO, the slices assighed to SHAVE3 have been modified:

Page 65 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

. = 0x70070d64;

S.shv3.cmx.data : {
*(.shv3.S.data*)
*(.shv3.S.rodata*)
*(.shv3.S._DATA sect¥®)
*(.shv3.S.__STACK__sect*)
*(.shv3.S.__static_data*)
*(.shv3.S.__HEAP__ sect¥*)
*(.shv3.S._ T _*)
*(.Irt.shv3.S.data*)
*(.Irt_shv3.S.rodata*)

*(.Irt_shv3.S._ DATA__sect¥*)
*(.Irt.shv3.S.__STACK _sect*)
*(.Irt.shv3.S.__static_data*)
*(.Irt.shv3.S._HEAP__ sect*)
*(.Irt.shv3.S._ T *)
}
APP_configh

For each SHAVE used in the application, it is necessary to add a reference to it in
the APP_UPA_CLOCKS variable. Otherwise, the execution will stop in the call to
entrypoint of each SHAVE that is not added in APP_UPA_CLOCKS. This is done
through the DEV_UPA_SHX structure. In this case, the variable is defined as
follows:

#define APP_UPA_CLOCKS (DEV_UPA_SHO I
DEV_UPA_SH3 I

\
\

7 7

DEV_UPA_SHAVE_L2 |
DEV_UPA_CDMA I
DEV_UPA_CTRL )

rtems_config.h

To use the SD Card, it is necessary to add in this file the following line:

#include <SDCardIORTEMSConfig.h>

The value of the variable CONFIGURE_MINIMUM TASK_ STACK_ SIZE has been
also changed to 16384.

Finally, BSP_SET_CLOCK function is as follows:

BSP_SET_CLOCK(12000, 200000, 1, 1, DEFAULT_RTEMS_CSS_LOS_CLOCKS,
APP_MSS_CLOCKS, APP_UPA_CLOCKS, 0, 0);

For proper operation with the SD Card, the second parameter (Phase-locked
loop) must be equal or greater than 100000. The default value in the example
004_SimpleCopyPlanes (260000) was tested, but some executions ended with
exceptions. As a result of this, a known value was used. This value is 200000.

SHAVE cache

Page 66 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Immediately after the return of SHAVEs (after swcwaitShaves function) the
DrvShavel 2CachePartitionFlushAndInvalidate method must be called for each SHAVE used.
Otherwise, data inconsistencies may occur. This function flushes the cache to the
RAM memory. Without this, if two rotations with different degrees are performed,
the resulting image would be as follows

Figure 30. Wrong rotated image

A part of image is rotated 70 degrees (the second execution). Nevertheless,
there is a data inconsistency because another part of image is rotated 25
degrees (the first execution).

In addition, in file app_config.c, these two instructions must appear (these
instructions are included in the example 004_SimpleCopyPlanes)

#define L2CACHE_CFG (SHAVE_L2CACHE_NORMAL_MODE)
DrvShavel 2CacheSetMode (L2CACHE_CFG);

These instructions configure the cache as a unique slice used by SHAVEs.
Makefile

Changes made to the Makefile depend the name of application and the number
of applications executed in each SHAVE.

In this case, the same entrypoint is executed in two different SHAVEs, therefore
the SHAVE applications section is as following:

SHAVE_APP_LIBS = $(faceDetectionSHAVEsApp).mvlib
SHAVEO_APPS = $(faceDetectionSHAVEsApp) -shvOlib
SHAVE3_APPS = $(faceDetectionSHAVEsApp) -shv3lib

Variable $(faceDetectionSHAVEsApp) indicates the application that is added in the
shvXlib library.

Page 67 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Optionally, cleaning rules can be added to delete the files .mvlib and shvXIlib
generated.

Finally, the entrypoint of the SHAVE is called ApplicationStart. This is defined in
ENTRYPOINTS = -e ApplicationStart --gc-sections. The main function in the
source code of SHAVE must have the same name.

BllKnown issues

At the time of writing, only the ccv_perspective_transform function is available for its
use in SHAVE processors.

If the face is greater than the window size (90x90), the face will not detected.
Blunit tests

The contents of the testFiles folder must be copied to the SDCard (/mnt/sdcard/)
resulting in (/mnt/sdcard/Rotation-invariant_faceDetector)

- Files required:
- Rotation-invariant_faceDetector/lena.png
- Rotation-invariant_faceDetector/face

18.3.1. Output expected
There are two outputs, text and images

The text output is:

UART: ccv_perspective_transform Usec CPU time: 0.271619 seconds
UART:

UART: Original Image

UART: total : O detected

UART: [!'] bbFf Original Image Usec CPU time: 0.226114 seconds
UART:

UART: Rotated Image: 25°

UART: 230 214 157 157 -2.927335

UART: total : 1 detected

UART: [!] bbf Rotated Image: 25° Usec CPU time: 0.262913 seconds
UART :

UART: Rotated Image: -25°

UART: total : O detected

UART: [!] bbf Rotated Image: -25° Usec CPU time: 0.193256 seconds
UART:

UART: Face detected

The images generated by this app (/mnt/sdcard/Rotation-
invariant_faceDetector/Results) are the following:

Page 68 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Figure 31. Rotated images

Page 69 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

-Licensing

Same as in Task “Other vision libraries”.

Blicode

The rotation-invariant face detection application can be found in folder
WorkPackage_3\myriad\apps\Rotation-invariant_faceDetector

Dependences

-libccv
-SDCardIO

The documentation for the relevant code is in Annex 11.
-Conclusions and Future work

A rotation-invariant face detector has been developed with this application. This
application can rotate, concurrently, an input image and executing, on each
rotated image, the face detector. If there is any positive result, the face has been
detected.

In addition, the ccv_perspective_transform function has been executed by the use of
SHAVE processors.

Future work can consider:

e Face detection currently loads the input image from the SD Card. Camera
will be integrated.
e Even though computational cost has been reduced, further optimizations
can be made:
o Face detection can be itself offloaded to SHAVE processors
o The face detection algorithm can be partitioned and parallelized
onto multiple SHAVEs
e The IMU sensor can be added to the module. This sensor can provide
camera orientation in space, and thus may be used to perform a single
rotation of the input image.
e Other face detectors may be considered (HOG+SVM, CNN-based, ...)

Page 70 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

19. COMPUTER VISION: SPARSE OPTICAL FLOW (LK
POINT TRACKING)

Blintroduction

Optical flow is the pattern of apparent motion of image objects between two
consecutive frames caused by the movement of object or camera. It is 2D vector
field where each vector is a displacement vector showing the movement of points
from the first frame to the second.

The objective in this task is to obtain the functionality of Lucas-Kanade point
tracking. This task’s code depends on: Task “Camera interface”.

In order to implement this module, at the time of writing two approaches have
been followed, using the OpenCV 1.0 library port and using the vTrack module
implemented internally by Movidius. The OpenCV solution only makes use of the
LeonOS processor while vTrack uses also the SHAVEs, having a better
performance.

19.1.1. OpenCV

OpenCV provides a sparse iterative version of the Lucas-Kanade optical flow in
pyramids in a single function, calcOpticalFlowPyrLK(). To select the points to
track, goodFeaturesToTrack() function is used. First, the algorithm takes the
first frame, detects Harris corner points in it, and then iteratively tracks those
points using Lucas-Kanade optical flow.

calcOpticalFlowPyrLK() receives the previous frame, previous points and the
next frame, returning the next points along with status numbers which have a
value of 1 if next point was found, and zero otherwise. In the next step, these
points are passed as previous points.

19.1.2. vTrack

vTrack is a feature tracking algorithm implemented internally by Movidius (not in
the MDK at the time of writing). The goal is to detect keypoints (features) on a
frame and try to follow them on succesive frames.

The output of the algorithm is a header with information about the frame (i.e.
timestamp, frameld, number of features), a list of features and debug
information (i.e. runtime of components, histogram based on age). Each feature
in the list has an (x,y) location, an id, and an age.

To minimize the runtime and improve the tracking quality, the algorithm has the
following capabilities:

e The number of SHAVEs is configurable. The user can minimize the latency
of the data by using more SHAVEs

Page 71 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Using gyro data, the algorithm is capable to estimate the new position of
the features. With gyro assist the tracking quality and speed is improved.
The algorithm is running on SHAVEs only, so the Leon just starts the
process and can handle other tasks while vTrack is running.

The algorithm can process multiple images in parallel

The algorithm has four major components:

1.

vPipe: This is the interface of vTrack with the application. It is responsible
for scheduling the other components of the algorithm based on the user
setting

. pixelPipe: Detects keypoints (features) on the input frame and generates

the Gaussian pyramid for optical flow

. opticalFlow: Finds the new position of the previous features on the current

Gaussian pyramid

featureMaintenance: Maintains the list of tracked features. The component
will assign id and age for the features, dropping the features which were
not tracked correctly by the opticalFlow. If needed, it will also add the
strongest features from pixelPipe.

Page 72 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

devided into 16 cells
nput Image
: 640x480
4 levels of gaussian
pyramids with padding
Pixel Pipe

1xSVU: Gauss Pyramids
1xSVU: Harris Corners
1xSVU: Scheduling

32x16 (max features x number of
cells, configurable) feature

___________________

]I:n_” T oatvesiocr s candidates, ordered by harris score
[ current
E : gaussian
' (frame n) CCITIITIIIIIIIIIIIIIITI
i "7 ‘[Optical Flow
prev. 1.| 8 (configurable)x SVU: find the
gaussian ¥ new position (x, y) of
(frame n-1) prev. features (frame n-1) in the
5 current gaussian (frame n)

previous * | tracked

tracked : : features
features | : frame n)
(frame n-1} | feature i |
; - candidates; |
Feature Mentainance : o
L (framen) : :

1xSVU: fo, qemmmmmeees !
7| Filter wrong features (Err > THS)
Add new features from candidates list

current (final)
tracked
features
frame n)

Figure 32. Vtrack flow diagram

It is possible to configure which of these components/steps is executed. Module
vPipe contains a structure called vPipeTransitionTable in which all the possible
configurations are stored. For example, the PP_FM_OF mode is defined as:

// VPIPE_MODE_PP_FM_OF

{

VPIPE_STATE_ERROR, // Next state for VPIPE_STATE_NOT_INIT
VPIPE_STATE_RUN_PIXEL_PIPE, // Next state for VPIPE_STATE_INIT
VPIPE_STATE_RUN_GYRO_PREDICT, // Next state for
VPIPE_STATE_RUN_PIXEL_PIPE

VPIPE_STATE_RUN_OF, // Next state for VPIPE_STATE_RUN_GYRO_PREDICT
VPIPE_STATE_RUN_FM, // Next state for VPIPE_STATE_RUN_OF
VPIPE_STATE_FILL_OUTPUT, // Next state for VPIPE_STATE_RUN_FM
VPIPE_STATE_DONE, // Next state for VPIPE_STATE_FILL_OUTPUT
VPIPE_STATE_ERROR, // Next state for VPIPE_STATE_FILL_DUMMY_OUTPUT
VPIPE_STATE_ERROR, // Next state for VPIPE_STATE_ERROR
VPIPE_STATE_INIT, // Next state for VPIPE_STATE_DONE

Page 73 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

i

In which each parameter can contain VPIPE_STATE_ERROR value to deactivate
it, or the VPIPE_STATE_RUN_XXX value to execute this step. For example if the
user needs to deactivate the gyroscope in the previous example, the structure
must be defined as follows:

// VPIPE_MODE_PP_FM_OF

{
VPIPE_STATE_ERROR, // Next state for VPIPE_STATE_NOT_INIT

VPIPE_STATE_RUN_PIXEL_PIPE, // Next state for VPIPE_STATE_INIT
VPIPE_STATE_ERROR, // Next state for VPIPE_STATE_RUN_PIXEL_PIPE
VPIPE_STATE_RUN_OF, // Next state for VPIPE_STATE_RUN_GYRO_PREDICT
VPIPE_STATE_RUN_FM, // Next state for VPIPE_STATE_RUN_OF
VPIPE_STATE_FILL_OUTPUT, // Next state for VPIPE_STATE_RUN_FM
VPIPE_STATE_DONE, // Next state for VPIPE_STATE_FILL_OUTPUT
VPIPE_STATE_ERROR, // Next state for VPIPE_STATE_FILL_DUMMY_OUTPUT
VPIPE_STATE_ERROR, // Next state for VPIPE_STATE_ERROR
VPIPE_STATE_INIT, // Next state for VPIPE_STATE_DONE

i

The selection of the mode to be run should be indicated in the function:
vPipelnit(volatile t_vPipeMode vp_mode, vpipeCallback_t* vpipeCallback, volatile
t_vPipeRes vp_resolution, frameSpec* input_frame_spec, float fov, float
camCenterX, float camCenterY).

An example running the VPIPE_MODE_PP_FM_OF mode:

vPipelnit(VPIPE_MODE_PP_FM_OF, vPipeDoneCb, Res_480, &camFrame[0].spec,
h_fov_degrees, cam_center_x, cam_center_y);

IlKnown issues
19.2.1. OpenCV

The library is not currently fully optimized for Myriad 2, as it uses only the
LeonOS processor.

19.2.2. vTrack

vTrack is currently in internal development by Movidius. At the time of writing, it
has been only possible to test an unfinished binary of the example application.

The final library will be included in the next MDK version.

Hllunit tests

19.3.1. OpenCV

Page 74 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

There are no unit tests.
19.3.2. vTrack

vTrack has 7 unit tests:

Test 1

This test will test the Gaussian image and corners generated by the pixelPipe
component.

Expected output

The results consist in printf seen using the debugger:

UART:

UART: Enable SHAVE L2 Cache

UART:

DEBUG: unitTestCrcCheck() : (addr:0x8001A400,0x0004CE00,0xAAA9135B)
=> PASS

DEBUG: unitTestCrcCheck() : (addr:0x80006900,0x00013B00,0x5E894CA0)
=> PASS

DEBUG: unitTestCrcCheck() : (addr:0x80001680,0x00005280,0x51422FAB)
=> PASS

DEBUG: unitTestCrcCheck() : (addr:0x80000000,0x00001680,0xAE3654B6)
=> PASS

DEBUG: unitTestCrcCheck() : (addr:0x70190AF0,0x00001900,0x7F949CDC)
=> PASS

UART: Feature count: 356

DEBUG:

DEBUG: moviUnitTest:PASSED

Afterwards, the debugger saves 5 pictures to the current folder.
The four levels of the gaussian pyramid:
pyrO_656x480_400.bw

pyrl_336x240_400.bw

pyr2_176x120_400.bw

pyr3_96x60_400.bw

Test 2

This test will test if the pixelPipe is finding corners correctly. It also tests if the
featureMaintenance is able to correctly pass these features to the output buffers.

Expected output

In the debugger window we will see the number of keypoints found by pixel pipe.
The number of tracked features (FM output) is also shown. After each vTrack
step, we should see the line:

DEBUG: unitTestAssert() : (value:0x00000001) => PASS

Page 75 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

At the end of the test, the following line will appear:
DEBUG: moviUnitTest:PASSED

Afterwards, the debugger saves the input picture with all the detected corners:
features_640x480.bw

Test 3

This test will run vTrack in dummy mode. This means that vTrack will generate
dummy features only. This can be used in a project to validate the datapath.

Expected output

In the debugger window we will see the number of keypoints generated. After
each vTrack step, we should see the line:
DEBUG: unitTestAssert() : (value:0x00000001) => PASS

At the end of the test, the following line will appear:
DEBUG: moviUnitTest:PASSED

Afterwards, the debugger saves the generated corners with black background:
features_640x480.bw

Test 4

The test will run vTrack several times using a test image and will report the
following things:

- Number of points tracked

- Average runtime of vTrack

- Average runtime of each module

- Average tracking error of a feature

Expected output

In the debugger window we will see the following information:

The coordinate of the points which have a tracking error (after 500 cycles) bigger
than 0.1 (squared distance).

If the test passes we should see the line:

DEBUG: unitTestAssert() : (value:0x00000001) => PASS

After this the average runtime, the average error and the number of points are
printed.

At the end of the test, the following line will appear:
DEBUG: moviUnitTest:PASSED

Afterwards, the debugger saves the input image with the position of each feature

(after 500 cycles, so they will not be perfect):
features_640x480.bw

Page 76 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Test5

The test will run vTrack several times obtaining pictures from the camera,
reporting the following data:

- Number of points tracked

- Average runtime of vTrack

- Average runtime of each module

- Average tracking error of a feature

Expected output

In the debugger window we will see the following information:

The coordinate of the points which have a tracking error (after 53 cycles) bigger
than 0.1 (squared distance).

If the test passes, we should see the line:

DEBUG: unitTestAssert() : (value:0x00000001) => PASS

After this the average runtime, the average error and the number of points are
printed.

At the end of the test, the following line will appear:
DEBUG: moviUnitTest:PASSED

Afterwards, the debugger saves the input image with the position of each feature
(after 53 cycles, so they will not be perfect):
features_640x480.bw

Test 6

The test will generate input images for vTrack. On each image we will have only
one corner at a given position. We will test if the corner coordinates are correct,
and if it can be tracked by optical flow correctly.

We should test all points, but because this would take a very long time, we select
several points from each portion of the image. The points will cover each cell,
corners close to each border.

Expected output

In the debugger window we will see the following information:

The coordinate of the points which have a tracking error (after 500 cycles) bigger
than 0.1 (squared distance).

If the test passes, we should see the line several times:

"UART: Testing (x.000, X)" - where x is the currently tested line

If every point was tracked correctly, we should see the following line:
DEBUG: moviUnitTest:PASSED

Test 7

Page 77 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

This test takes two real images and track features multiple times from one to
another.

-Licensing
19.4.1. OpenCV

Same as in Task “Other vision libraries”.
19.4.2. vTrack

@copyright All code copyright Movidius Ltd 2012, all rights reserved.

Blicode
19.5.1. OpenCV

An example implementing the Lukas-Kanade algorithm can be found in
WorkPackage_3\myriad\apps\OpticalFlow\OpticalFlowLK_OpenCV of EoT
repository.

This example takes around 2 seconds to calculate the initial points, and 0.35
seconds for each new picture in the included picture example. Changing the
parameters and depending on the configuration necessary for its application,
these values can be reduced up to 1 second for the initial point calculation and
0.09 seconds per each new image.

' Figure 33. OpCpticaI flow example

Dependences
Same as in Task “Other vision libraries”.
19.5.2. vTrack

The vTrack current version can be found in WorkPackage_3\myriad\apps
\OpticalFlow\vTrack of EoT repository.

Page 78 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Figure 34. Vtrack optical flow example

Folder structure:

- modules: contains the vTrack modularized source code.
- myriad: contains the tests for vTrack.
- pc: contains the pc model of vTrack.

Required:

- You need to have an MDK in the same folder as vTrack to compile the
application for the EoT device.
- For the pc model, you need OpenCv and MDK.

Il conclusions and Future work
In this Section, two ways of using tracking algorithms using the EoT device have
been explained. The first one uses the OpenCV library ported to EoT board, and

the second uses the vTrack library which is being internally developed by
Movidius engineers.

Page 79 29-02-2016



D3.3 Firmware Documentation

H2020-643924-EoT

20. POWER MANAGEMENT

Blintroduction

Different components of the EoT device can be activated/deactivated in order to
reduce power consumption. Some important elements, such as WiFi or camera,
can be set in a low power consumption state. The power of the Myriad processor
is controlled by the so-called power islands. In total, there are more than 20

power islands.

Each power island controls the power supply of a certain

component in the chip. The following are the main power island domains:

AON - Always-on domain
CSS - CPU Subs-system

DSS - DDR Sub-system

SHAVE[11:0] - SHAVE processor core island, one per processor
PMB - Processor Memory block (CMX DMA, Mutex, Bicubic)
MSS - Media Sub-system (Cameras, MIPI, SIPP filters)

The following diagram shows these power islands (best viewed in color).

Sw Controled /0 Muluplexing

I .......... I $ 4 § $ i i L L ¥
MiP1 [le or (™ w0 Ul :; | ':';' ':: I "':;“ '::
D-PHY 212 laned F / J
S i S s D S A N A B
e L hatng e s o) RISC-RT :":; -
L14/a uo |
L [UUN GO S [TIE= P A puriing DaGE LT ki !2}!&. |
p:_":;": Coler Comb, wr LB i ot ey o T e 512_:’ 1;-5’-“ .
. AMC Crossbar i ::':':a | |3
g . S E Beidge
CMX Memory Fabric Multi-Ported RAM Subsystem E Z .
J H
Inter-SHAVE Interconnect {151} =
Arbiter & 16:1 mux = e e - - n - ~ - - =] =
—— - B | B I E|lR|E|E |8 ¥R
vamenes | 33333 3|3/3/3 8|33
. DDR Contredler J I ) I I . I . ] I I : I I I I 1
Stacked KGD
LWJ ‘ independent power islands
OWEr
Movidius % .

Figure 35. Myriad 2 power islands diagram

The primary power island (island 0 or CSS island) is special. It can be activated
by a change of state on the wake-up signal or via a reset. The power islands can

be controlled independently except:

e AON must be powered to start CSS domain

Page 80

29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

e (CSS must be powered to start PMB, DSS or MSS domains
e PMB must be powered to start any of the SHAVE domains

For Example, to run code on SHAVE 8 processor from PMB you need: AON, CSS,
PMB, and SHV[8] on.

The SHAVE drivers will automatically turn off SHAVE islands when not in use, but
other islands need to be controlled at application level.

A low powered scenario may consider an application running from DRAM and
having two different regions of interest. In that case, the core section of the
application would live in the first part of the DRAM and other functions and data
would live outside this region. On entering the low power state the first part of
DRAM would be locked into the LeonOS L2 cache. This would allow for the DRAM
to be put into self-refresh and all islands except the CSS would be disabled.
Therefore, the clock may be reduced to lower frequencies and the device may
wait until a specific wake-up event. To wake up the Myriad the needed islands
are re-enabled.

There are functions to enable/disable power islands although their use is very
complex at that level. Certain sequential steps and memory conditions should be
taken into account to put the Myriad chip into a low power state. Movidius is
currently working to make this functionality more usable for programmers!4.

BlLow power states
20.2.1. Camera standby modes

For power saving or reconfigurability reasons, the camera can be put in standby.
There are two types of standby modes:

e« HOT STANDBY: the sensor is deactivated (but still configured), the MIPI
controller and PHY and the MSS connections are still active and the
CIF/SIPP are reconfigured but not restarted. This standby type is mostly
used to save processor time by suspending the interrupts and is fast to
recover from (activation in less than 0.5 milliseconds)

e COLD STANDBY: same as hot standby but the sensor is deactivated.
Wakeup out of this state implies full sensor reconfiguration. The wake up
duration may last tens of milliseconds, depending on the number of the
sensor registers to configure. This standby type saves more power.

20.2.2. WiFi power policies
The WiFi subsystem supports predefined power management policies which allow

a host application to guide the behaviour of the power-management algorithm?>.
The available policies are:

14 Myriad 2 Datasheet v1.06
15 CC3100\CC3200 SimpleLink™ WiFi® Network Processor Subsystem Programmer's
Guide

Page 81 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Normal (Default) — Features the best trade-off between traffic delivery
time and power performance.

Always on - The WiFi subsystem is kept fully active at all times,
providing the best WLAN traffic performance. This policy is user-directed,
whereby the user may provide the target latency figure.

Long Sleep Interval - This low power mode comes with a desired max
sleep time parameter. The parameter reflects the desired sleep interval
between two consecutive wakeups for beacon reception. The WiFi module
computes the desired time and wakes up to the next DTIM that does not
exceed the specified time. The maximum allowed desired max sleep time
parameter is two seconds.

Low latency power - This device power management algorithm exploits
opportunities to lower its power mode. Trade-off tends toward power
conservation performance.

20.2.3. Myriad power states

The Myriad chip supports six different power states:

OFF - All power off to all Myriad supplies, needs full system reset and boot
time on power-up.

Deep Sleep - All power islands off, only AON domain powered. Only IO
and core supply are necessary. This state monitors the wakeup signal for
wakeup condition. If the wakeup condition is met, it follows the wakeup
sequence to start the Phase Locked Loop-based (PLL) clock generator and
reload the boot image.

Sleep Mode A - All power islands off, only AON domain and DRAM are
powered. Only 10, core, and DRAM associated supplies are necessary. This
state monitors the wakeup signal for wakeup condition. If the wakeup
condition is met, it follows the wakeup sequence to start PLL and reload
the boot image. In this mode boot image can be stored in DRAM (in self-
refresh mode).

Sleep Mode B - Similar to Sleep Mode Type A, applicable when size of
boot image can fit in 256KB (L2 cache size).

LOW Power - Only AON and CSS power domains are on. Wakeup can be
from any GPIO pin or the wakeup pin. PLL can be on or off, depending on
boot time versus low power trade-off.

Active - Application dependent.

At the time of writing, these states are not yet exposed to the programmer in the
MDK software, but future releases will.

Hllunit tests

There are not automatic tests for testing the functionalities of this module.

Blcode

WiFi and Camera power management is achieved through the corresponding EoT
module functions. Device power islands are managed by the user using functions
from the Myriad basic drivers.

Page 82 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

20.4.1. WifiFunctions power management functions

. _i32 setWlanPower (_u8 power)
This function changes the operational power of the device.

o _i32 setPowerPolicy (_u8 policy)
This function sets the device power policy.

. _i32 sleepWlanDevice (int time)
This function is used to make the device enter sleep mode.

20.4.2. Camera power management functions

. int standby_camera ()
Puts the camera into 'hot standby' mode.

Returns:
-1 if there was an error. O otherwise.

. int wakeup_camera ()
Wakes up the camera from a standby mode.

Returns:
-1 if there was an error. O otherwise.

20.4.3. Myriad power management functions

OsDrvCpr.h File Reference

RTEMS CPR Header File.
#include <OsDrvCprDefines.h>

OsDrvCpr.h

OsDrvCprDefines.h

Figure 36. Include dependency graph for OsDrvCpr.h

. int OsDrvCprPowerTurnOfflsland (enum Powerlslandindex island_index)

Turn off a single given power island, taking care of any delays that are needed. NOTE: this
function does not reset anything in the power island before turning it off. It is recommended to
reset peripherals, and to remove the clock to peripherals before turning the island they are in off.

Returns:
OS_MYR_DRV_SUCCESS on success, hon-zero otherwise

. int OsDrvCprPowerTurnOfflslandRaw (u32 islands_mask, u32 iso_ticks, u32
disable_ticks)

Turn off one or more power islands, giving explicit isolation enable, and island disable delay
values in clock ticks.

Page 83 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Parameters:
in islands_mask the index of each bit that is set to 1 tells which islands should be
turned off
in iso_ticks the number of clock cycles to wait after enabling isolation, but
before turning off power
in disable_ticks the number of clock cycles to wait after disabling power, before the
function returns. If the number of ticks is 0 then it will wait until the
power island status becomes inactive.
Returns:

OS_MYR_DRV_SUCCESS on success, hon-zero otherwise

. int OsDrvCprPowerTurnOnlisland (enum Powerlslandindex island_index)

Turn on a single given power island, taking care of any delays that are needed. NOTE: this
function does not reset anything in the power island after turning it on, the user must do that

manually.
Returns:

OS_MYR_DRV_SUCCESS on success, hon-zero otherwise

. int OsDrvCprPowerTurnOnlislandRaw (u32 islands_mask, u32 trickle_ticks, u32

enable_ticks)

Turn on one or more power islands, giving explicit trickle, and enable delay values in clock ticks.

Parameters:
in islands_mask the index of each bit that is set to 1 tells which islands should be
turned on
in trickle_ticks number of clock cycles to wait after enabling trickle power, but
before turning on full power
in enable_ticks number of clock cycles to wait after enabling full power, but before
turning of isolation. If the number of ticks is 0, then it will wait
until power island status is active.
Returns:

OS_MYR_DRV_SUCCESS on success, hon-zero otherwise

DrvCprDefinesMa2100.h File Reference

. Enumerations

enum PowerlIslandIndex

Enumerator

POWER_ISLAND_CSS_DIGITAL
POWER_ISLAND_CSS_ANALOG
POWER_ISLAND_RETENTION
POWER_ISLAND_SHAVE_0
POWER_ISLAND_SHAVE_1
POWER_ISLAND_SHAVE_2
POWER_ISLAND_SHAVE_3
POWER_ISLAND_SHAVE_4
POWER_ISLAND_SHAVE_5
POWER_ISLAND_SHAVE_6
POWER_ISLAND_SHAVE_7
POWER_ISLAND_SHAVE_8
POWER_ISLAND_SHAVE_9
POWER_ISLAND_SHAVE_10
POWER_ISLAND_SHAVE_11

Page 84

29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

POWER_ISLAND_PMB

POWER_ISLAND_MSS_DIGITAL
POWER_ISLAND_MSS_ANALOG
POWER_ISLAND_DSS_DIGITAL
POWER_ISLAND_DSS_ANALOG

-Conclusions and Future work

WiFi and Camera low power options have already been implemented in Camera
and WifiFunctions modules. Regarding the Myriad low power modes, there are a
set of very low level functions that support this task at a power-island level.
Movidius' engineers are currently working to provide a higher level API for power
management that abstracts hardware complexities to the programmer.

Page 85 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

21. CONTROL MODE API, DESKTOP SIDE

This module was described in deliverable D3.1.

Page 86 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

22. CONTROL MODE API, ANDROID

This module was described in deliverable D3.2.

Page 87 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

noelya86@gmail.com

Page 88 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

23. OTHER VISION LIBRARIES

Blintroduction

In this task, several pre-existing vision libraries have been ported to the EoT
platform. This task, which was not in the original DoW, has been added with the
idea of offering common and well-known libraries to the programmer-user of the
EoT board.

23.1.1. OpenCV 1.0

OpenCV is a computer vision library released under a BSD license and hence it is
free for both academic and commercial use. It has C++, C, Python and Java
interfaces and supports Windows, Linux, Mac OS, iOS and Android. OpenCV was
designed for computational efficiency and with a strong focus on real-time
applications.

The goals of the OpenCV project were described as:

1. Advance vision research by providing not only open but also optimized code
for basic vision infrastructure. No more reinventing the wheel.

2. Disseminate vision knowledge by providing a common infrastructure that
developers could build on, so that code would be more readily readable and
transferable.

3. Advance vision-based commercial applications by making portable,
performance-optimized code available for free-with a license that did not require
to be open or free themselves.

Detailed information of all the functionalities of the library can be found in
http://www.cs.indiana.edu/cgi-pub/oleykin/website/OpenCVHelp/.

23.1.2. OpenCV 2.4 in the cloud

Although OpenCV 1.0 has been ported to the EoT board, it is also important to
have the possibility of running newer releases. To achieve this goal, an external
server running an API to use OpenCV 2.4.3 is used. With this approach, it is
actually possible to run any OpenCV version.

HTTP POST request, send image

C—

OpenCV

JSON response
Figure 37. OpenCV in the cloud paradigm

Page 89 29-02-2016


http://www.cs.indiana.edu/cgi-pub/oleykin/website/OpenCVHelp/

D3.3 Firmware Documentation H2020-643924-EoT

Concretely, a free Pythonanywhere server has been used
(www.pythonanywhere.com). This is a free service which provides a server with
web2py and OpenCV 2.4.3 in which it is possible to program any computer vision
capabilities.

23.1.2.1. Pythonanywhere configuration

In order to configure the Pythonanywhere server, the following steps should be
followed:

1. Register for a free account in PythonAnywhere.com
2. Once you have registered and logged in, go to the Web tab, and Add a
new web app

5 7L TR
B pythonanywhere
i i »

Consoles Files Web Schedule Databases

© Add a new web app

t You have no web apps

To create a PythonAnywhere-hosted web app, click the "Add an
button to the left.

Figure 38. Add new app

3. Select web2py as your python framework.

Create new web app

Select a Python Web framework
...or select “Manual configuration” if you want detailed control.

= Django

= web2py

» Flask

= Bottle

» Manual configuration (including virtualenvs)

What other frameworks should we have here? Send us some feedback using the link at the top of
the page!

Figure 39. Selecting web2py

4. Select an admin password for web2py. Note that this is a web2py
admin password, and it is different from your PythonAnywhere.com
password.

5. Open a new tab, and go to web2py admin interface located at:
https://username.pythonanywhere.com/admin/default/index

Page 90 29-02-2016


http://www.pythonanywhere.com/
https://username.pythonanywhere.com/admin/default/index

D3.3 Firmware Documentation H2020-643924-EoT

web2py™ administrative interface

Instal Ied applications Change admin password Reload routes
E admin (currently running) Manage - Version
' 2.9.12-
Manage Disable stable+timestamp.2015.01.17.06.11.03
(Running on Unknown, Python 2.7.6)
. Manage ~ Disable

New simple application

Application name:

Choose an application name
(e.g. opencvdemo )

Create

Figure 40. Choosing the application name

6. You should see vyour application folder under the Files tab on
PythonAnywhere when you go down the directory structure
home/username/web2py/appname

7. To add OpenCV code to the web2py open the following code:
home/username/web2py/applications/appname/controllers/default.py
and add new functions there. For testing, the following functions which
use OpenCV to obtain the dimensions of the image have been
developed. The program can receive a URL with the image and an
image embedded in the HTTP request:

def image_dimensions():

# Masquerade as Mozilla because some web servers may not
like python bots.

hdr = {"User-Agent”: “"Mozillas/5.0"}

# Set up the request

req = urllib2.Request(request.vars.url, headers=hdr)

try:
# Obtain the content of the url
con = urllib2_urlopen( req )
# Read the content and convert it into an numpy array
im_array = np.asarray(bytearray(con.read()),
dtype=np.uint8)

# Convert the numpy array into an image.

im = cv2.imdecode(im_array, cv2.IMREAD_GRAYSCALE)

# Get the width and heigh of the image.

height, width = im.shape

# Wrap up the width and height iIn an object and return
the encoded JSON.

return json.dumps({"width" : width, "height" : height})

except urllib2_HTTPError, e:
return e.fp.read()

def process_image():

Page 91 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

upfile = request._vars.imagen

fname = request.vars.imagen.filename

#return Json.dumps({"'Contenido del fichero”
upfFile.file.read()})

#return json.dumps({"Nombre del fichero" : fname})

im_array = np.asarray(bytearray(upfile.file.read()),

dtype=np.uint8)

# Convert the numpy array into an image.

im = cv2.imdecode(im_array, cv2.IMREAD_GRAYSCALE) #
cv2.imdecode(image, cv2.IMREAD_COLOR)

# PROCESS YOUR OPENCV IMAGE HERE. EXAMPLE: Get the width
and heigh of the image.
height, width = im.shape

# Wrap up the width and height in an object and return the
encoded JSON.
return json.dumps({"width" : width, "height" : height})

If the server is running, it is possible to check its functionality using the well-
known command line utility curl. The following are the commands to test both
examples, sending an URL of a picture and sending the image file:

URL:
curl -F url=http://example.com/image.jpg
http://username.pythonanywhere.com/appname/default/image_dimensions

Image:
curl -v -X POST
"http://eottest._pythonanywhere.com/opencvdemo/default/process_image"
-F imagen=@fichero_imagen.jpg

23.1.2.2. Creating your own server

It is also possible to create your own server using, for example, Python, Django
and any OpenCV version, application or library (an example can be seen in
http://www.pyimagesearch.com/2015/05/11/creating-a-face-detection-api-with-
python-and-opencv-in-just-5-minutes/).

23.1.3. libccv

libccv is a minimalist open-source computer vision library for embedded devices
developed by Liu Liu. It is meant to be easy to deploy and has a simple and well-
organized code structure.

Its main characteristics are:
- It is portable and embeddable.
- It has a clean interface with cached image pre-processing.

- It includes several modern computer vision algorithms, for example:
e Image classifier

Page 92 29-02-2016


http://www.pyimagesearch.com/2015/05/11/creating-a-face-detection-api-with-python-and-opencv-in-just-5-minutes/
http://www.pyimagesearch.com/2015/05/11/creating-a-face-detection-api-with-python-and-opencv-in-just-5-minutes/

D3.3 Firmware Documentation H2020-643924-EoT

e Frontal face detector, object detectors for pedestrians and cars

e Text detection algorithm

e Object tracking algorithm

o Feature point extraction algorithm

Detailed information of all the functionalities of the library can be found in
http://libccv.org/.

23.1.4. Quirc

QR codes are a type of high-density matrix barcodes. Quirc is a library for
extracting and decoding them from images. It is fast enough to be used with
realtime video: extracting and decoding from VGA frame takes about 50 ms on a
modern x86 core. Other features that make it a good choice for the purpose of
EoT are:

- It has a robust and tolerant recognition algorithm. It can correctly
recognise and decode QR codes which are rotated and/or oblique to the
camera. It can also distinguish and decode multiple codes within the same
image.

- It is easy to use, with a simple API described in a single commented
header file.

- It is small and easily embeddable, with no dependencies other than
standard C functions.

- It has a very small memory footprint: one byte per image pixel, plus a few
kB per decoder object.

- It uses no global mutable state, and is safe to use in a multithreaded
application.

- BSD-licensed, with almost no restrictions regarding use and/or
modification.

This library will be particularly useful for the museum demonstrator.

23.1.5. Google Cloud Vision API
Recently Google has release the Google Cloud Vision API. The limited preview of
this tool encapsulates machine learning models that can learn and predict the

content of an image as an easy-to-use REST API. Cloud Vision API quickly
classifies images into thousands of categories.

The following set of Google Cloud Vision API features can be currently used:

- Label/Entity Detection detects the dominant entity within an image,
from a broad set of object categories.

- Optical Character Recognition to retrieve text from an image providing
automatic language identification.

- Safe Search Detection to detect inappropriate content within the studied
picture.

- Facial Detection along with associated facial features such as eye, nose
and mouth placement, and likelihood of over 8 attributes like joy and
SOrrow.

Page 93 29-02-2016


http://libccv.org/
https://cloud.google.com/vision/

D3.3 Firmware Documentation H2020-643924-EoT

- Landmark Detection to identify popular natural and manmade
structures, along with the associated latitude and longitude of the
landmark.

- Logo Detection to identify product logos within an image.

The EoT project has recently received confirmation about participating in the
limited preview, thus, it have been only possible to test the main functionality of
the Cloud Vision API following the basic tutorials, which uses the “curl”
application. As future work, EoT will provide tools and examples for obtaining
results using the EoT device.

IlKnown issues
23.2.1. OpenCV 1.0

The library is not currently optimized for Myriad 2, using only the LeonOS
processor.

Limitations
There are some known limitations of the port which work in the original OpenCV:

- The Highgui-User Interface functionality is not supported in the embedded
device.

- JPEG and other image formats are not supported. On the contrary, PNG is
fully supported through the use of zlib/libpng.

- Video is not supported due to dependencies with libraries optimised for
PCs.

- Some parts of the library have been modified to store data in general
memory and not in the stack. However, in order to use cascade detectors
and other code that requires a significant amount of stack memory to
allocate pointers the RTEMS minimum task stack size must be increased
using:

==#tdefine CONFIGURE_MINIMUM_TASK_STACK_SIZE 16384==
23.2.2. OpenCV 2.4 in the cloud
The functionality depends on the code implemented in the server.
23.2.3. libccv

The library is not currently optimized for Myriad 2, using only the LeonOS
processor.

Limitations

There are some known limitations of the port (which work in the original libccv):
- JPEG is not supported
- Reading/writing sqlite3 files is not supported. This feature could be used in
read/write methods of:

Page 94 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

0}
o

23.2.4.

The library
processor.

Limitations

ccv_scd
ccv_convnet

Quirc

is not currently optimized for Myriad 2, using only the LeonOS

e If QR Code is rotated too much, as in Test 5, the QR Code is detected, but
it cannot be decoded.

e If QR Code is too small, as in Test 8, the QR Code is detected, but it
cannot be decoded.

o If test image is greater than 225 x 225 px, as in Test 2, Test 3, Test 4 and
Test 7, the execution in Myriad produced an error.

UART: Unexpected trap (0x09) at address 0x800367C4 Data access
Exception

UART: PSR: OxF34010C1 PC: 0x800367C8 NPC: 0x800367CC TPC: 0x800367C4
UART: G1l: 0x800553C8 G2: 0x00000000 G3: OxO000B2E82 G4: 0x000003ES8
UART: G5: Ox8FFAAEEA G6: OXFBABAEEA G7: OXEBAEAASA 10: 0x00000000
UART: I1: Ox00000000 I2: 0x80045D00 13: 0x800597A0 14: Ox2BADABDO
UART: I5: 0x00000000 16: Ox800596F0 17: 0x800367B4 Y: 0x00020496
UART:

UART: LO: 0x000001B9 L1: Ox00000001 L2: 0x80003D54 L3: 0x00000010
UART: L4: 0x00000020 L5: O0x00000020 L6: Ox701FFDAO L7: Ox701FFD9C
UART: 10: 0x80045D00 I1: Ox00000509 12: 0x800597CO 13: O0x8005A734
UART: 14: OxA65FABDO I5: OxO7E1EB2B 16: 0x80059758 17: 0x80003A4C
UART: SRA: 0x00000000 SAO:0x00000000 SA1l: 0x00000000 SA2: 0x00000000
UART: SA3: 0x00000000 SA4:0x00000000 SA5: 0x00000000

Similarly to OpenCV, in order to solve this problem the variable
CONFIGURE_MINIMUM_TASK_STACK_SIZE (rtems_config.h) must be set
to a larger value. The used value for all tests has been 22000.

Blunit tests

23.3.1. OpenCV 1.0

The tests for OpenCV 1.0 can be found in the repository in the WorkPackage_3\
myriad\apps\OpenCV_examples folder.

This application runs several examples using the OpenCV library. In most cases,
the user needs to check the results saved in the SD card. Assertions check some
common execution errors.

The contents of the testFiles folder (OpenCVTests) must be copied to the SD card
(/mnt/sdcard/) resulting in mnt/sdcard/OpenCVTests.

List of examples

Page 95

29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

1. Canny edge detector
- Files required:
- File: /mnt/sdcard/OpenCVTests/data/nature.png
- Output:
- File: /mnt/sdcard/OpenCVTests/results/resultEdge.png
2. Haar-based Cascade Face Detector
- Files required:
- /mnt/sdcard/OpenCVTests/data/lena.png
- /mnt/sdcard/OpenCVTests/data/haarface.xml
- Output:
- /mnt/sdcard/OpenCVTests/results/resultFaceDetection.png
3. K-means algorithm
- Output:
- /mnt/sdcard/OpenCVTests/results/resultTestKmeans.png
4. Contours
- Files required:
- /mnt/sdcard/OpenCVTests/results/resultTestContours_1.png
- Output:
- /mnt/sdcard/OpenCVTests/results/resultTestContours_1.png
- /mnt/sdcard/OpenCVTests/results/resultTestContours_2.png
5. Histogram/LUT
- Files required:
- /mnt/sdcard/OpenCVTests/data/baboon.png
- Output:
- /mnt/sdcard/OpenCVTests/results/resultDemHist.png
6. Delaunay Triangulation
- Output:
- /mnt/sdcard/OpenCVTests/results/delaunay/delaunay[n].png
([n]={0,1,2})
- /mnt/sdcard/OpenCVTests/results/delaunay/delaunay[n]_s.png
([n]={0,1,2})
- /mnt/sdcard/OpenCVTests/results/delaunay/voronoi.png
7. testPyramidSegmentation
- Files required:
- /mnt/sdcard/OpenCVTests/data/fruits.png
- Output:
- /mnt/sdcard/OpenCVTests/results/resultPyramidSegmentation.pn
g
8. testSquareDetector
- Files required:
- /mnt/sdcard/OpenCVTests/data/pic[n].png ([n]={1,2,3,4,5,6})
- Output:
- /mnt/sdcard/OpenCVTests/results/squares/ResultSquarespic[n].p
ng ([n]={1,2,3,4,5,6})
9. Watershed
- Files required:
- /mnt/sdcard/OpenCVTests/data/fruits.png
- Output:
- /mnt/sdcard/OpenCVTests/results/resultWatershed.png
10.Morphological Operations
- Files required:

Page 96 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

- /mnt/sdcard/OpenCVTests/data/baboon.png
- Output:
- /mnt/sdcard/OpenCVTests/results/morphology/baboon_E_OC.png
- /mnt/sdcard/OpenCVTests/results/morphology/baboon_E_ED.png
- /mnt/sdcard/OpenCVTests/results/morphology/baboon_R_OC.png
- /mnt/sdcard/OpenCVTests/results/morphology/baboon_R_ED.png
- /mnt/sdcard/OpenCVTests/results/morphology/baboon_C_OC.png
- /mnt/sdcard/OpenCVTests/results/morphology/baboon_C_ED.png
11.Fourier
- Files required:
- /mnt/sdcard/OpenCVTests/data/suit.png
- Output:
- /mnt/sdcard/OpenCVTests/results/dftres2.png
12.Inpainting
- Files required:
- /mnt/sdcard/OpenCVTests/data/lena.png
- Output:
- /mnt/sdcard/OpenCVTests/results/inpainted.png
13.Min Area Rectangle
- Output:
- /mnt/sdcard/OpenCVTests/results/rectCircle.png
14.Lucas Kanade
- Files required:
- /mnt/sdcard/OpenCVTests/data/suit.png
- Output:
- /mnt/sdcard/OpenCVTests/results/LKDemo.png
15.D0G
- Files required:
- /mnt/sdcard/OpenCVTests/data/DunLoghaire_320x240.png
- Output:
- /mnt/sdcard/OpenCVTests/results/DOG.png
16.Dilation
- Files required:
- /mnt/sdcard/OpenCVTests/data/lena_512x512_luma.png
- Output:
- /mnt/sdcard/OpenCVTests/results/dilate2.png
17.Harris Corners
- Files required:
- /mnt/sdcard/OpenCVTests/data/lena_512x512_luma.png
- Output:
- /mnt/sdcard/OpenCVTests/results/cornerharris.png
18.Median Filter
- Files required:
- /mnt/sdcard/OpenCVTests/data/ref _chroma_median_out_512x5
12_P444_8bpp.png
- Output:
- /mnt/sdcard/OpenCVTests/results/medianfilter.png

Expected output

Page 97 29-02-2016



D3.3 Firmware Documentation

UART:
UART:
UART:
UART:
UART:
UART:
UART:
UART:
UART:
UART:
UART:
UART:
UART:
UART:
UART:
UART:
UART:
UART:
UART:
UART:
UART:
UART:
UART:

Thread 1 created

Starting run

SD card mounted? 1

+ Test 1 passed.
+ Test 2 passed.
+ Test 3 passed.
+ Test 4 passed.
+ Test 5 passed.
+ Test 6 passed.
+ Test 7 passed.
+ Test 8 passed.
+ Test 9 passed.
+ Test 10 passed. OK

+ Test 11 passed. OK

+ Test 12 passed. OK

+ Test 13 passed. OK

+ Test 14 passed. OK
TEST 15 Usec CPU time:
TEST 16 Usec CPU time:
TEST 17 Usec CPU time:
TEST 18 Usec CPU time:
Unmounting SD card...

Tests ended

Benchmarks

OK
OK
OK
OK
OK
OK
OK
OK
OK

181010
574738
1079811
598534

H2020-643924-EoT

The following examples of the MvCV library of the MDK have been implemented
using OpenCV:

1) SimpleCrossCompilableCVPipe
2) SippTutCO
3) testHWHarrisCorners
4) testHwMedian

The computational time in seconds used for the OpenCV version VS the MvCv

version can be shown in the following graph:

Page 98

29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Benchmark, execution times
1,2

0,8

0,6

0,4
N |
1) 2) 3) 4)

B MDK M OpenCV

Figure 41. MDK vs OpenCV benchmarks

o

23.3.2. OpenCV 2.4 in the cloud

The test for OpenCV 2.4 in the cloud can be found in the repository in the
WorkPackage_3\ myriad\apps\ RTEMS_API_REST_example folder.

This application connects to a server previously created in the cloud in
https://www.pythonanywhere.com, which comes with OpenCV 2.4 pre-installed.

The sample application sends a POST request to the REST API of the server,
including a picture which is read from the SD card. The server example returns
its width and height in pixels.

The data of the access point must be changed in line 105:

connectToAP("'AndroidAP", "tqwg4654", SL_SEC_TYPE_WPA_WPA2, 20);

The picture 0.9kb.jpg must be copied to the SD card (/mnt/sdcard/).

Expected output

UART: Mounted= 1, opening file of 1147 bytes
UART:

UART: Closing file of 1147 bytes

UART:

UART: Connecting...

UART: [GENERAL EVENT]

UART: Connecting...

Page 99 29-02-2016


https://www.pythonanywhere.com/

D3.3 Firmware Documentation H2020-643924-EoT

UART: Connecting...

UART: Own IP

UART: IP Address 192.168.43.222

UART: IP Address 50.19.109.98

UART: Received: HTTP/1.1 200 OK

UART: Server: ngx_openresty/1.4.3.6

UART: Date: Mon, 15 Feb 2016 17:39:53 GMT
UART: Content-Type: text/html; charset=utf-8
UART: Transfer-Encoding: chunked

UART: Connection: keep-alive

UART: Vary: Accept-Encoding

UART: X-Powered-By: web2py

UART: Set-Cookie: session_id_opencvdemo=37.29.212.73-93514171-09ee-
4e78-bf29-6

UART: 7e9e6b1818f; Path=/

UART: Expires: Mon, 15 Feb 2016 17:39:53 GMT
UART: Pragma: no-cache

UART: Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-
ch

UART: eck=0

UART: X-Clacks-Overhead: GNU Terry Pratchett
UART:

UART: 1b

UART: {"width": 26, "height": 24}

UART: O

23.3.3. libccv

The test for libccv can be found in the repository in the WorkPackage_3\
myriad\apps\libccv_examples folder.

This application runs several examples using the libccv library. Some of them
compare the obtained results vs expected result, giving an assertion if the values
are different. In others, the user needs to check the results saved in the SD card.

The contents of the testFiles folder (data and samples) must be copied to the SD
card (/mnt/sdcard/).

List of examples

1. Canny edge detector.
- Files required:
- samples/blackbox.png
- data/blackbox.canny.bin
- Output:
- File: samples/testl.png (1 if border has been detected, 0 if not)

2. Pedestrian cascade detector using Integral Channel Features.
- Files required:
- samples/pedestrian.icf
- samples/pedestrian2.png

Page 100 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

- Output:
- Text: Number of pedestrians detected. For each detection,
classification confidence and x, y, width and height of the
rectangle.

3. Matrix addition operation.

4. Sobel operations.
- Files required:
- samples/chessbox.bmp
- data/chessbox.sobel.x.bin
- data/chessbox.sobel.y.bin
- data/chessbox.sobel.u.bin
- data/chessbox.sobel.v.bin
- data/chessbox.sobel.x.3.bin
- data/chessbox.sobel.y.3.bin
- data/chessbox.sobel.x.5.bin
- Output:
- samples/test4.png (partial derivative on y within 5x5 window)

5. Otsu threshold calculation.

6. Image contrast modification.

- Files required:
- samples/nature.bmp
- data/nature.contrast.0.5.bin
- data/nature.contrast.1.5.bin

- Output:
- samples/test6_1.png (reducing contrast to 0.5)
- samples/test6_2.png (increasing contrast 1.5 times)

7. Perspective transform on a picture.
- Files required:
- samples/chessbox.bmp
- data/chessbox.perspective.transform.bin
- Output:
- samples/test7.png (picture rotated along y-axis for 30°)

8. Histogram of gradients calculation.
- Files required:
- samples/nature.bmp
- Output:
- samples/test8.png (values obtained)

9. Scale Invariant Feature Transform.
- Files required:
- samples/book.png
- Output:
- Text: List of keypoints matching.

10. CBLAS matrix multiplication.

Page 101 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

11. Convolutional network of 11x11 on 225x225 with uniform weights.
12. Convolutional network of 5x5 on 27x27 with non-uniform weights.
13. Convolutional network of 5x5x4 on 27x27x8 partitioned by 2.

14. Stroke Width Transform (text detection).
- Files required:
- samples/text-detect.png
- Output:
- Text: Number of texts detected. For each detection, x, y, width and
height of the rectangle.

15. Face Cascade Detector
- Files required:
- samples/face (folder with cascade.txt and stage-0.txt to stage-
15.txt files)
- samples/suit.png
- Output:
- Text: Number of faces detected. For each detection, classification
confidence and x, y, width and height of the rectangle.

Expected output

UART: Thread 1 created

UART: Starting run

UART: Example 1, canny and write png

UART: Value of image: rows - 500, cols - 500, type - 1074794497
UART: Example 2, pedestrian cascade detector (several days)
UART: Loading files

UART: Detecting pedestrians

UART: Results:

UART: 20 36 50 152 0.074491

UART: total : 1 detected

UART: Example 3, matrix addition

UART: Example 4, sobel

UART: Example 5, otsu threshold

UART: Example 6, image contrast

UART: Example 7, perspective transform

UART: Example 8, HOG

UART: Example 9, SIFT

UART: Pictures read

UART: Keypoints calculated obj 1179

UART: Keypoints calculated img 1179

UART: 73.833488 2.090770 => 73.833488 2.090770
UART: 30.298519 2.555899 => 30.298519 2.555899
UART: 10.025833 2.887055 => 10.025833 2.887055

Page 102 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

UART: 105.916695 222.729172 => 105.916695 222.729172
UART: 105.916695 222.729172 => 105.916695 222.729172
UART: 117.846596 238.603943 => 117.846596 238.603943
UART: 75.254646 144.538391 => 75.254646 144.538391
UART: 338x289 on 338x289

UART: 1179 keypoints out of 1179 are matched

UART: elpased time : 0

UART: Example 10, CBLAS mat multiplication

UART: Example 11, Convolutional network

UART: Example 12, convolutional network of 5x5 on 27x27 with non-uniform
weigh

UART: ts

UART: Example 13, convolutional network of 5x5x4 on 27x27x8 partitioned by 2
UART: Example 14, Text detect

UART: 64 179 104 13

UART: 182 178 67 13

UART: 89 197 136 18

UART: 183 197 34 13

UART: total : 4 detected

UART: Example 15, Detect faces

UART: 144 59 53 53 2.364821

UART: total : 1 detected

UART: Tests ended

23.3.4. Quirc

The test for Quirc can be found in the repository in the WorkPackage_3\
myriad\apps\Quirc_example folder.

This application runs several examples using the Quirc library. For each test, the
output will be the number of QR codes detected and their content. If an error
occurs, the output will display its type.

The content of the testFiles folder must be copied to the SD card (/mnt/sdcard/)
resulting in /mnt/sdcard/QuircTest/.

To obtain information about the used QR Codes, some QR Codes have been
uploaded to https://zxing.org/w/.

List of examples and expected output
Test 1

This example is a basic test. The image contains a unique QR code, without
margins on the sides. The main purpose is to check the proper behavior of the
library.

Files required:

- File: /mnt/sdcard/QuircTest/TestQR.png
The image size is 150 x 150 px.

Page 103 29-02-2016


https://zxing.org/w/

D3.3 Firmware Documentation H2020-643924-EoT

" Decode Succeeded
Raw text EoT E u

Raw bytes 40 34 56 f5 48 ec 11 ec 11 ec 11 ec 11 ec 11 ec
11 ec 11

Barcode format OR_CODE

Parsed Result Type TEXT

Parsed Result EoT

Figure 42. QR first test image

In this example, the output is:

UART: Test 1

UART: num_codes: 1
UART: Data: EoT
UART: ------------——--

Test 2

Second test image contains a QR Code and text. The main purpose is to check if
Quirc library distinguish between QR Codes and text, decoding the code and
ignoring the text.

In contrast to Test 1, this image has margins. In this way, we can know if Quirc
looks for the QR Code.

Files required:

- File: /mnt/sdcard/QuircTest/TestTex.png

The image size is 490 x 490 px.

Hold code anywhere on screen to focus

Figure 43. QR second test image

Page 104 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

The output of the Test 2 is:

UART: Test 2

UART: num_codes: 1

UART: Data: http://www.qgrdroid.com
UART: -----=--mmmmmmm-

Test 3

Just as Test 1, in Test 3 we will use an image without margins and its content
will be a unique QR Code. As opposed to Test 1, the test image size is 500 x 500
px. Test 3 has as its objective to verify if Myriad can use Quirc library to decode
images with this size.

Files required:
- File: /mnt/sdcard/QuircTest/Test500x500.png

[m] 3 [u]

#4* Decode Succeeded E

Raw text EoT 500 x 500 px

Raw bytes 40 24 56 f2 63 53 dl c2 09 10 21 0 80 d4 cO c@
81 cl ed

Barcode format OR_CODE

Parsed Result Type TEXT

Parsed Result EoT 500 x 500 px

Figure 44. QR third test image

The output is:

UART: Test 3

UART: num_codes: 1

UART: Data: EoT 500 x 500 px
UART: ------==m=mmmm-

Test 4
The previous tests used images without rotation. Therefore, the main purpose is
to check if Quirc library can decode rotated QR codes. In this case, the image

size is 300 x 300 px.

Files required:
- File: /mnt/sdcard/QuircTest/TestRotated.png

Page 105 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

#" Decode Succeeded

Raw text Rotated Code EoT

Raw bytes 41 85 26 f7 46 17 46 56 42 04 36 f6 46 52 84 56
5 40 ec

Barcode format OR_CODE

Parsed Result Type TEXT

Parsed Result Rotated Code EoT

Figure 45. QR fourth test image

The output of Test 4 is:

UART: Test 4

UART: num_codes: 1

UART: Data: Rotated Code EoT
UART: ----------------

Test 5

Test 5 is an expansion of Test 4. Once again, the QR Code is rotated, but in Test
5 rotation is greater than Test 4. Test 5 has as its objective to verify if rotation
affects the recognition and decoding.

Files required:
- File: /mnt/sdcard/QuircTest/TestRotatedError.png
The image size is 225 x 225 px.

Figure 46. QR fifth test image

Page 106 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

The output is:
UART: Test 5
UART: num_codes: 1

UART: Data: ECC failure
UART: -=====— oo

Even though the example recognizes a QR Code, Quirc library cannot decode it.
Test 6

In this test, the QR Code will be red. The main objective is to check if Quirc
library can recognize different colors. The image size is 50 x 50 px.

Files required:
- File: /mnt/sdcard/QuircTest/TestRedCode.png

gt 010

#¢* Decode Succeeded :;ﬁ

' [=]

Raw text Red Code EoT

Raw bytes 40 c5 26 56 42 04 36 T6 46 52 04 56 5 40 ec 11
ec 11 ec

Barcode format QR _CODE

Parsed Result Type TEXT

Parsed Result Red Code EoT

Figure 47. QR sixth test image

The output is:

UART: Test 6

UART: num_codes: 1
UART: Data: Red Code EoT
UART: ------===—-mmm-

Test 7

This test aims at verifying that the Quirc port can recognize and decode several
codes in the same image. The test image contains two QR Codes, one is rotated.

Files required:

- File: /mnt/sdcard/QuircTest/TestTwoQR.png
The image size is 400 x 300 px.

Page 107 29-02-2016



D3.3 Firmware Documentation H2020-643924-E0T
E ﬁ "?'t‘
| |
@ ;c
!
Figure 48. QR seventh test image

The output of Test 7 is:

UART: Test 7

UART: num_codes: 2

UART: Data: EoT Data: http://eyesofthings.eu/
UART: -----======--mm-

Test 8

The main purpose of this test is to check if the Quirc library port can work with
very small sizes. The test image size is 25 x 25 px.

Files required:
- File: /mnt/sdcard/QuircTest/TestTooSmall.png

The output is:

UART: Test 8

UART: num_codes: 1
UART: Data: Invalid version
UART: ------=====mmo--

Like that test 5, Quirc library detects a QR Code, but the library cannot decode it.
In this case, the error is different.

Benchmark
The following table shows the times in the execution of example program. For
each test, there are 3 times: Time in loadCode (reads the image and creates the

necessary structures), time in readQR (detects and reads the information) and
total time.

Page 108 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

From these times, we can draw the following conclusions.

e As expected, method loadCode uses most of the time.
e The higher image size, the higher time.
e The higher number of QR codes, the higher time to decode QR code.

BllLicensing
23.4.1. OpenCV 1.0

OpenCV is released under a BSD license and hence it is free for both academic
and commercial use.

By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install, copy or use
the software.

License Agreement For Open Source Computer Vision Library

Copyright (C) 2000-2008, Intel Corporation, all rights reserved. Copyright (C)
2008-2011, Willow Garage Inc., all rights reserved. Third party copyrights are
property of their respective owners.

- Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

The name of the copyright holders may not be used to endorse or promote
products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall the Intel Corporation or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages (including, but

Page 109 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

not limited to, procurement of substitute goods or services; loss of use, data, or
profits; or business interruption) however caused and on any theory of liability,
whether in contract, strict liability, or tort (including negligence or otherwise)
arising in any way out of the use of this software, even if advised of the
possibility of such damage.

****3rd Party Modules****
The zlib/libpng License (Zlib)

This software is provided 'as-is', without any express or implied warranty. In no
event will the authors be held liable for any damages arising from the use of this
software.

Permission is granted to anyone to use this software for any purpose, including
commercial applications, and to alter it and redistribute it freely, subject to the
following restrictions:

The origin of this software must not be misrepresented; you must not claim that
you wrote the original software. If you use this software in a product, an
acknowledgment in the product documentation would be appreciated but is not
required.

Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

This notice may not be removed or altered from any source distribution.

23.4.2. OpenCV 2.4 in the cloud
No license issues.

23.4.3. libccv
Libccv source code is distributed under BSD 3-clause License.

Files in directories ./samples are licensed under the Creative Commons
Attribution 4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

Copyright (c) 2010, Liu Liu
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

Page 110 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

* Neither the name of the authors nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3rd Party Modules

Kissfft:

Copyright (c) 2003-2010 Mark Borgerding
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

* Neither the author nor the names of any contributors may be used to endorse
or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

dSFMT:

Page 111 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Copyright (c) 2007, 2008, 2009 Mutsuo Saito, Makoto Matsumoto and Hiroshima
University.

Copyright (c) 2011, 2002 Mutsuo Saito, Makoto Matsumoto, Hiroshima University
and The University of Tokyo.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

* Neither the name of the Hiroshima University nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SFMT:

Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
University.

Copyright (c¢) 2012 Mutsuo Saito, Makoto Matsumoto, Hiroshima University and
The University of Tokyo.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

* Neither the names of Hiroshima University, The University of Tokyo nor the
names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

Page 112 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

libebb:
see doc/index.html and examples/hello_world.c for explanation

webpage: http://tinyclouds.org/libebb/
git repository: http://github.com/ry/libebb/tree/master

(The MIT) LICENSE
Copyright © 2008 Ryah Dahl (ry@tinyclouds.org)

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A  PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

multipart-parser-c:
Based on node-formidable by Felix Geisenddrfer
Igor Afonov - afonov@gmail.com - 2012

MIT License - http://www.opensource.org/licenses/mit-license.php

shal: TODO

Page 113 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

sqlite3:
2001 September 15

The author disclaims copyright to this source code. In place of a legal notice,
here is a blessing:

May you do good and not evil.
May you find forgiveness for yourself and forgive others.
May you share freely, never taking more than you give.

23.4.4. Quirc
https://github.com/dlbeer/quirc
Copyright (C) 2010-2012 Daniel Beer <dlbeer@gmail.com>

Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE
USE OR PERFORMANCE OF THIS SOFTWARE.

Blicode

23.5.1. OpenCV 1.0

The WifiFunctions library can be found in the folder
WorkPackage_3\myriad\libs\leon\OpenCV of EoT repository.
Dependences

- zlib

- libpng 1.4 (included inside the EoT OpenCV library)

- SDCardIO

23.5.2. OpenCV 2.4 in the cloud

An example with the server can be found in WorkPackage_3\myriad\apps\
RTEMS_API_REST_example of EoT repository.

Dependences

- SDCardIO

Page 114 29-02-2016



D3.3 Firmware Documentation

- WifiFunctions
23.5.3. libccv

The libccv library can be found

WorkPackage_3\myriad\libs\leon\libccv of EOT repository.

Dependences
- zlib
- cblas
- libpng

23.5.4. Quirc

The Quirc library can be found

WorkPackage_3\myriad\libs\leon\Quirc of EoT repository.

Dependences
No external dependences.

Il conclusions and Future work

H2020-643924-EoT

in the folder

in the folder

Common vision libraries such as: OpenCV, libccv, or Quirc have been ported to
the EoT device. Moreover, the EoT platform allows the connection with external
computer vision libraries in the cloud, in this case, with OpenCV 2.4 through

Pythonanywhere.

Since Google Cloud Vision API offers a wide range of possibilities for computer
vision, native support will be added to the EoT platform. The work done in the
integration of OpenCV 2.4 with Pythonanywhere, where POST requests to a web
service are sent, will be used to achieve the access to the Google Cloud vision

API.

Page 115

29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

24. MOTOR CONTROL

Blintroduction

Although the prices of the robot and drones has dropped considerably in the last
few years, they lack of autonomous behaviour requiring human intervention to
operate properly. The Motor Control module enables EoT board to provide
autonomy and connectivity to robots and drones.

The Motor Control module provides EoT board with a means of communicating
with a wide variety of devices such as robots, drones, actuators and sensors. By
this mean, it is possible to control small robot cars and flying drones; open and
close doors as required; monitor devices such as fridges, vending machines; or
control systems like air conditioning and lighting which might not have access to
internet or wireless connectivity.

There is no standard interface or protocol for communication between devices, at
the moment. Therefore, the Motor Control module encapsulates the hardware
details of the communication into an easy-to-use API, which could be extended
to support multiple devices.

As an application, Motion Control Module of EoT board can be used to control a
robot car. As the proof of concept for this application, the robot car Cherokey
4WD from DFRobot!® (Figure 49) was selected as it is low-cost and has a robust
aluminium frame. Additionally, an Android App was developed to allow the
remote control of a ground vehicle via WiFi.

Figure 49. Cherokey 4WD from DFRobot.

The remote control of a robot car has two main components:

e Motion Control API
e Android app for Ground Robot control.

IlMotion Control API

The Motion Control API is a C/C++ library which provides access to the motion of
a ground car or a drone in an easy-to-use interface. This API encapsulates the
hardware specifics allowing to create easy-to-maintain code and port across

16 http://www.dfrobot.com

Page 116 29-02-2016



D3.3 Firmware Documentation

H2020-643924-EoT

projects. The API was initially developed on Arduino before being ported to

Raspberry Pi and finally to Myriad2.

The current implementation of the Motion Control API only provides function for

controlling ground vehicles which are:

Move forward,
Move backward,
Tank-turn left
Tank-turn right
Stop

Currently the Cherokey!” 4WD from DFRobot is the only fully supported robot by
the Motion Control API. The incorporation of support for other robots or drones
into the Motion Control API remains subject of future work.

The following codes shows sample code for controlling the Cherokey 4WD from
the EoT board using the Motor Control Unit and the available functions for the
Cherokey4WD on the Motion Control API as defined in the file Cherokey4WD.h.

// —- Other includes --
#include "Cherokey4WD/Cherokey4WD._h"

#define GPIO_M1_EN_PIN 45
#define GPIO_M2_EN_PIN 46
#define GP10_M1_PWM_PIN 49
#define GP10_M2_PWM_PIN 50
#define CHEROKEY_DIRECTION_FORWARD_STATE 1
int main(void)
{
// -- Board initialization code --
// Set up the cherokey
CHEROKEY_DIRECTION_FORWARD_STATE) ;

// Set the direction to forward at maximum speed
Cherokey4WDForward(255, 255);

// -- Wait for 1 second, so it keeps moving for the whole

// Set the direction to backwards at half speed
Cherokey4WbDBackward(128, 128);

// -- Wait for 1 second, so it keeps moving for the whole

// Tank turn left at half speed
Cherokey4WDTurnLeft(128, 128);

// -- Wait for 1 second, so it keeps moving for the whole

// Tank turn right at maximum speed
Cherokey4WDTurnRight(255, 255);

// -- Wait for 1 second, so it keeps moving for the whole
// -- Board finalization code --

return O;

second --

second --

second --

second --

Cherokey4WDSetup(GP10_M1_EN_PIN, GPIO_M1_PWM_PIN, GPIO_M2_EN_PIN, GPI0O_M2_PWM_PIN,

17 http://goo.gl/7Gxi6n

Page 117

29-02-2016




D3.3 Firmware Documentation H2020-643924-EoT

File Cherokey4WD.h
/**
* Set up the pins which are going to be used to control the Cherokey4WD.
* Set the pin state which corresponds to the forward direction (HIGH or LOW)
@param pin_ml_enable
@param pin_ml_pwm
@param pin_m2_enable
@param pin_m2_pwm
* @param pin_state_forward
*/
void Cherokey4WDSetup(uint8 pin_ml_enable, uint8 pin_ml_pwm,
uint8 pin_m2_enable, uint8 pin_m2_pwm, uint8 pin_state_forward);

X %

/**
* Set the direction and speed for the wheels of the car
* @param direction_left Direction of the wheels on the left side
* @param speed_left Speed of the wheels on the left side (0 to 255)
* @param direction_right Direction of the wheels on the right side
* @param speed_right Speed of the wheels on the right side (0 to 255)
*/

void Cherokey4WDSetDirectionSpeed(uint8 direction_left, uint8 speed_left,
uint8 direction_right, uint8 speed_right);

/**

* Stop the car

*/

void Cherokey4WDStop();

/**

* Moves the Cherokey 4WD forward at the specified speed (0 to 255) on each of the wheels
(left and right wheels)

* @param speed_left

* @param speed_right

*/

void Cherokey4WDForward(uint8 speed_left, uint8 speed_right);

/**

* Moves the Cherokey 4WD backward at the specified speed (0 to 255) on each of the
wheels (left and right wheels)

* @param speed_left

* @param speed_right

*/
void Cherokey4WDBackward(uint8 speed_left, uint8 speed_right);

/**

* Turns the Cherokey 4WD to the left at the specified speed (0 to 255) on each of the
wheels (left and right wheels)

* @param speed_left

* @param speed_right

*/
void Cherokey4WDTurnLeft(uint8 speed_left, uint8 speed_right);

/**

* Turns the Cherokey 4WD to the right at the specified speed (0 to 255) on each of the
wheels (left and right wheels)

* @param speed_left

* @param speed_right

*/

void Cherokey4WDTurnRight(uint8 speed_left, uint8 speed_right);

Sample code for controlling Cherokey 4WD from EoT board.

Motion functions for Cherokey4WD as defined in the API file
Cherokey4WD.h.

24.2.1. Cherokey 4WD

Page 118 29-02-2016



D3.3 Firmware Documentation

H2020-643924-EoT

The Cherokey 4WD from DFRobot is controlled by four signals, two ENABLE for
controlling the direction of the wheels and two PWM to control the speed. For
more information on the Cherokey 4WD please refer to:

http://www.dfrobot.com/wiki/index.php?title=Cherokey 4WD Mobile Platform

%28SKU:ROB0102%29

24.2.2, EoT DevBoard and Cherokey 4WD Hardware

interface

The Cherokey 4WD is controlled by four signals in the range of 0-5V, which is
compatible with the pins in EOT Motor Control Header. The hardware connection

between the Cherokey 4WD and EoT board is summarized in Table 1.

Figure 50 shows a schematic diagram of the connections.

Table 1. Connection between the EoT DevBoard and the Cherokey 4WD

EoT Motor Control Header Pin

Cherokey 4WD Pin

3: PWMO D5:M1_PWM
4: PWM1 D7:M2_PWM
5: DIRO D4:M1_EN
6: DIR1 D6:M2_EN
7: GND GND

Cherokey 4WD

P

EoT DevBoard R1

o

Figure 50. Connection between the EoT DevBoard and the Cherokey 4WD

Page 119

29-02-2016


http://www.dfrobot.com/wiki/index.php?title=Cherokey_4WD_Mobile_Platform_%28SKU:ROB0102%29
http://www.dfrobot.com/wiki/index.php?title=Cherokey_4WD_Mobile_Platform_%28SKU:ROB0102%29

D3.3 Firmware Documentation H2020-643924-EoT

BlAndroid App for Ground Robot control.

The Ground Robot Android app (called "GRApp”, hereafter) provides an easy to
use interface for controlling a ground robot (See Figure 51). As proof of concept,
the communication between the GRApp and EoT board is performed using a
custom designed protocol, namely the “Mobile Robot Control protocol”. This
protocol uses UDP sockets to send and receive data packages. This protocol is
presented in section 24.3.1.

GroundRobot

rec 1042039

Figure 51. Ground Robot Android App

The user interface of GRApp has two modes for controlling a Ground Robot, the
first mode uses the touch pad to create commands for moving forward,
backward, tank turn left and tank turn right. The second mode the app uses the
phone gyroscope to detect its orientation and issues the motion command
according to this. GRApp needs the IP address of the EoT board in order to send
the motion commands. The IP address should be introduced into the Server field
(Figure 52).

Page 120 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Figure 52. Entering the IP address of the EoT board

After the IP of EoT board has been introduced into the Server field of GRApp, the
“Connect” field should be set to on state. Then a connectivity test is performed to
ensure the communication between GRApp and EoT board is successful. While
the testing is performed the message “Connecting to Cherokey 4WD” is shown
below the connect button. If the connection is successful, then the message
“Connected to Cherokey 4WD" is shown (Figure 53).

Figure 53. Connecting and Connected to EoT board

Once GRApp succeeds in communicating with EoT board, it is possible to start
sending motion commands to Cherokey 4WD. The large grey rectangle behaves
as a touch pad where the top, bottom, right, left sides issue commands to move
forward, move backward, turn right, turn left, respectively.

Page 121 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

Alternately, the gyroscope and accelerometer of the phone could be used to
issue the motion commands. By setting the switch “Use accelerometer” to on
state, it would set the app into landscape mode and start issuing motion
commands to EoT board. In this mode, the tilt angle of the phone controls the
speed and direction of the motion. An indicator is drawn to shown the direction
of motion sent to EoT board. Figure 54 shows an example of the screen produced
by a light tilt to the front.

* T d 0112
GroundRobot

Server: |’| 0.42.0.39

Connect: .

Use accelerometer .

Connecting to server ...

Figure 54. Motion control using phone orientation

24.3.1. Mobile Robot Control Protocol

The Ground Robot Android app provides an easy to use interface for remote
control of a ground robot over WiFi. The Mobile Robot Control protocol was
designed as a proof-of-concept for enabling a simple communication protocol
between GRApp and EoT board. For the sake of robustness, this protocol could
be replaced by other widely available protocols such as MQTT. At the time of
writing this section, only one command, "GroundRobotMotion”, is supported by
this protocol. This command sets the speed and direction of the wheels. Table 2
summarizes this protocol.

Table 2. Ground Vehicle Motion Command.

Byte Name Value Description
0 Start of packet OxXFF | Fixed
1 Protocol 0x01 | Version of the protocol used.
version Fixed.
2 Packet length 0x04 | Number of bytes in the payload

of the packet. It is counted from
the byte 3 to the one byte before

the CRC.

3 Command ID 0x02 | ID of the command sent.

4 Direction OxXX | Direction of the movement, the
possible values are:
‘s’ — stop

‘f’ — forward

Page 122 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

‘b’ - backward

" - left

‘r' - right

The ASCII code of the character
is set as data, ie. To issue the
stop command the ASCII value of
‘s’ which is 0x73 is set as value

of the field.
5 Speed left 0 - 255 | Speed in the range of 0 to 255
6 Speed right 0 - 255 | Speed in the range of 0 to 255
7 Checksum OxXX | Checksum for validate integrity

of the data. It is calculated by
applying xor from byte 3
(Command ID) to one byte
before the checksum.

8 End of packet 0x55 | Fixed

The commands should be issued every time that the motion state of the vehicle
is going to be changed. In other words, if a forward motion command is sent to
vehicle, it would keep moving forward until a stop or other command is sent.

IlKnown issues

Currently the Motion Control API does not have support for other robots than the
Cherokey 4WD. Currently, work to support iCreate Kobuki Robot is in progress.

Hllunit tests

In order to test the hardware of the Motion Control module on EoT board, unit
tests based on an Arduino Uno board were developed to simulate the presence of
a robot. These tests change the status of the GPIO pins and send I12C messages
to validate the required hardware components. The connection between Arduino
and EoT boards should be performed as detailed in Table 3.

Table 3. Connections between Arduino Uno and EoT board for the Motion
Control Hardware Tests

Arduino pin Motor Control header
pin
A4 I12C_SDA
A5 I12C_SCL
8 DIRO
9 DIR1
10 BRAKEOQ
11 BRAKE1
12 PWMO
13 PWM1

BllLicensing

This library contains proprietary intellectual property of Movidius Ltd. The library
and its source code are protected by various copyrights and portions may also be

Page 123 29-02-2016



D3.3 Firmware Documentation H2020-643924-EoT

protected by patents or other legal protections. This software is licensed for use
with the Myriad family of processors.

THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT SHALL THE COPYRIGHT OWNER BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
http://www.movidius.com/

Blcode

In order to compile and run the source code required for controlling the Cherokey
4WD using the EoT board, it is required a working installation of the Movidius
MDK version >= 15.06.4.

GRApp was tested to compile and work successfully using the Android API level
23. It was developed using Android Studio v 1.5.0.

The source code for the EoT board and the GRApp can be found at:
https://github.com/CTOmovidius/MvBot/tree/master/Robot/Cherokey4WD.

The documentation for the relevant code is in Annex 12.

-Conclusions and Future work

The Motor Control Unit allows interaction between EoT board and a wide set of
devices such as robots, drones, doors and different sensors. As part of the
Motion Control Unit, the Motion Control API was developed to provide an easy-to-
use software interface to different robots. Currently only the Cherokey4WD s
fully supported by this API. As the proof-of-concept, a sample application was
created using EoT board to enable the remote control of Cherokey 4WD from an
Android smartphone. Future work includes expanding the support for different
robots such as iCreate Kobuki robot or drones like H8 mini and upgrading GRApp
to use a standard communication protocol such as MQTT.

Page 124 29-02-2016


https://github.com/CTOmovidius/MvBot/tree/master/Robot/Cherokey4WD

D3.3 Firmware Documentation H2020-643924-EoT

25. CONCLUSIONS

This document describes the firmware software developed in EoT as of March
1st, 2016. This firmware is intended to be compiled for and executed on the
Myriad 2 SoC along with a number of other hardware components such as Wifi,
SD card, etc. The software modules have been generated according to the task
structure of WP3 (Software). Some of the tasks shown in this document were not
in the original DoW but were added later since they were considered relevant for
the project (Other vision libraries, Motor control, CNN, audio input & codec). The
main participating partners are UCLM, DFKI and Movidius. Deliverables D3.1 and
D3.2 described the Control Mode software generated for desktop and Android
platforms, along with the associated firmware side, and thus they will not be
covered here.

Work in EoT firmware will continue mainly to finalize the remaining CV modules,
and in terms of testing and further optimization of existing modules.

Page 125 29-02-2016



D3.3 Firmware Documentation

26. GLOSSARY

H2020-643924-EoT

AON Always ON

AP Access Point

API Application Programming Interface
BRISK Binary Robust Invariant Scalable Keypoints
BSD Berkeley Software Distribution
CISC Complex Instruction Set Computing
CNN Convolutional Neural Network

CSS CPU Subs-System

DDR Double Data Rate

DIP Dual in-line Package

DMA Direct Memory Access

DSS DDR Sub-System

DoW Description of Work

GPIO General Purpose Input/Output

GPL General Public License

HD Hard Disk

HOG Histogram of Oriented Gradients
HTTP Hypertext Transfer Protocol

HW Hardware

12C Inter-Integrated Circuit

12S Integrated Interchip Sound

10 Input/Output

ISR Interrupt Service Routine

JPEG Joint Photographic Experts Group
LED Light-Emitting Diode

LK Lucas-Kanade

MAC Media Access Control

MDK Movidius Development Kit

MIPI Mobile Industry Processor Interface
MQTT Message Query Telemetry Transport
MSS Media Sub-System

MvCv Movidius Computer Vision

0S Operating System

PC Personal Computer

PDF Portable Document Format

PMB Processor Memory Block

PNG Portable Network Graphics

POSIX Portable Operating System Interface
QR Quick Response

REST Representational State Transfer
RISC Reduced Instruction Set Computing
RTEMS Real-Time Executive for Multiprocessor Systems
RTP Real-Time Transport Protocol

RTSP Real-Time Streaming Protocol

SD Secure Digital

SIFT Scale-Invariant Feature Transform

Page 126

29-02-2016




D3.3 Firmware Documentation

H2020-643924-EoT

SoC System on Chip

SPI Serial Peripheral Interface

SVM Support Vector Machines

SW Software

TCP/IP Transmission Control Protocol / Internet Protocol
TI Texas Instruments

\VPU Vision Processing Unit

WAV Waveform Audio File

WEP Wired Equivalent Privacy

WPA WiFi Protected Access

Page 127

29-02-2016




Annexes



Annex 1
WitiFunctions






Contents

1 Data Structure Index 1
1.1 DataStructures . . . . . . . e 1

2 File Index 3
21 FileList . . . . . e 3

3 Data Structure Documentation 5
3.1 WifiConnectionState Struct Reference . . . . . . . . . . .. . 5
3.1.1  Field Documentation . . . . . . . . . . . . e 5

3111 channel. . . . . L 5

3.1.1.2 mode . . .. 5

3.1.1.3  password . . ... 5

3114 security . . .. 5

3.1.1.5 ssid name . . . . .. L e e 5

4 File Documentation 7
4.1 WifiFunctions.h File Reference . . . . . . . . . . . . . 7
4.1.1 Detailed Description . . . . . . . . e 9

4.1.2 Macro Definition Documentation . . . . . . . . . ... 10

4121 CLR_STATUS BIT . . . . . . e e 10

41.22 DEFAULT_CHANNEL . . . . . . . 10

4123 DEFAULT PASSWORD . . . . . . . . it e e e e e e e 10

4124 DEFAULT_SECURITY . . . . . . . e 10

4125 DEFAULT_SSID . . . . . . . e 10

4126 GET_STATUS_BIT . . . . . . e e 10

4127 IS_CONNECTED . . . . . . . . et e e 10

4128 IS_CONNECTION_FAILED . . . . . . . . . . . i 10

4129 IS_IP_ACQUIRED . . . . . . . 10

41210 IS_IP_LEASED . . . . . . . . e 10

41211 IS_P2P_NEG_REQ_RECEIVED . .. ... ... ... .. ... ... ..... 10

41212 IS_PING_DONE . . . . . . . . e 10

4.1.213 IS_SMARTCONFIG_DONE . . . . . . . . . . . i 10



iv CONTENTS
41.214 IS_SMARTCONFIG_STOPPED . . . . . . . . . . .. . e 10
41215 IS_STA_CONNECTED . . . . . . . . . i 10
41216 SET_STATUS BIT . . . . . . . . s 10
41217 SL_STOP_TIMEOUT . . . . . . . . . et 10

4.1.3 Enumeration Type Documentation . . . . . . . . . . . . ... 10
4131 ConnectionMode . . . . . . . . L 10
4132 e AppStatusCodes . . . . . . . . . 10
4133 e StatusBits . . . . . . . 11

4.1.4 Function Documentation . . . . . . . .. . 11
4.1.4.1 configureSimpleLinkToDefaultState . . . . . . . . ... .. ... ... ..... 11
4142 connectTOAP . . . . . . L 11
4.1.43 disconnectFromAP . . . . . . L 12
41.44 generateAP . . . e 12
4.1.45 generateAPFromDefaultProfile . . . . . .. ... ... . ... . 12
4.1.4.6 generateAPFromProfile . . . . . . . . ... 13
4.1.4.7 generateAPFromProfileOnErrorDefault . . . . . . .. ... .. ... ... .. 14
4.1.4.8 generateAPSaveProfile . . . . . . . .. .. ... L 14
41.49 getHostlP . . . . . . 14
4.1.410 getLessSaturatedChannel . . . . . . . . .. ... .. Lo 14
41.411 getOwnlP . . . . L 15
41412 getOWnMAC . . . . . . L e 15
41413 getProfile . . . . . . . . 15
41.414 getStationlP . . . . . .. 16
41.415 getWifiState . . . . . . . . . 16
41416 PING . . o o e 16
4.1.4.17 pingToConnectedDevice . . . . . . . . . . . . . 16
4.1.4.18 prettylPvd . . . L 16
4.1.419 printPrettylPv4_char . . . . . . .. 16
4.1.4.20 printPrettylPv4_u32 . . . . . .. 16
4.1.4.21 printPrettyMAC . . . . . . L 17
4.1.4.22 printWifiParams . . . . . . . . 17
4.1.4.23 removeProfiles . . . . . . .. 17
4.1.4.24 restoreProfile . . . . . . L 17
41.4.25 saveCurrentProfile . . . . . . . . . . . 17
4.1.4.26 saveProfile . . . . . . . . 17
4.1.427 scanWifi . . . . . 18
4.1.4.28 scanWifiRestoreState . . . . . . . . . . .. 18
4.1.429 setOWNMAC . . . . . . . . . e 18
4.1.4.30 setPowerPolicy . . . . . . . . . 18

41.4.31 setWifiState . . . . . . . . . . e 19




CONTENTS v
4.1.4.32 setWlanPower . . . . . . . . . e 19
4.1.4.33 sleepWlanDevice . . . . . . . . 19
41.4.34 waitClients . . . . . . . . . e e e 19
41435 wlanSetMode . . . . . . . .. e e 19







Chapter 1

Data Structure Index

1.1 Data Structures

Here are the data structures with brief descriptions:

WifiConnectionState . . . . . . . . . L e e e



Data Structure Index




Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

WifiFunctions.h
Library for common WiFi functions . . . . . . . . . . . ... ..



File Index




Chapter 3

Data Structure Documentation

3.1 WifiConnectionState Struct Reference

#include <WifiFunctions.h>

Data Fields
* _i8 ssid_name [32]
+ _i8 password [32]
* _u8 security

e _u32 channel
» ConnectionMode mode

3.1.1 Field Documentation

3.1.1.1  _u32 channel

3.1.1.2 ConnectionMode mode

3.1.1.3 _i8 password[32]

3.1.1.4 _u8 security

3.1.1.5 _i8 ssid_name[32]

The documentation for this struct was generated from the following file:

« WifiFunctions.h



Data Structure Documentation




Chapter 4

File Documentation

4.1 WifiFunctions.h File Reference

Library for common WiFi functions.

#include <simplelink.h>
#include <rtems.h>
Include dependency graph for WifiFunctions.h:

WifiFunctions.h

simplelink.h rtems.h

Data Structures

« struct WifiConnectionState

Macros

« #define DEFAULT_SSID "Myriad2Wifi"

+ #define DEFAULT_PASSWORD "visilabap"

« #define DEFAULT_SECURITY SL_SEC_TYPE_WPA_WPA2

« #define DEFAULT_CHANNEL 8

« #define SL_STOP_TIMEOUT OxFFFF

- #define SET_STATUS_BIT(status_variable, bit) status_variable |= ((unsigned long)1<<(bit))

« #define CLR_STATUS_BIT(status_variable, bit) status_variable &= ~((unsigned long)1 < <(bit))

« #define GET_STATUS_BIT(status_variable, bit) (0 != (status_variable & ((unsigned long)1<<(bit))))

« #define IS_PING_DONE(status_variable) GET_STATUS_BIT(status_variable, STATUS_BIT_PING_DONE)

« #define IS_CONNECTED(status_variable) GET_STATUS_BIT(status_variable, STATUS_BIT_CONNECT «
ION)



8 File Documentation

* #define IS_STA_CONNECTED(status_variable) GET_STATUS_BIT(status_variable, STATUS_BIT_STA «
CONNECTED)

« #define IS_IP_ACQUIRED(status_variable) GET_STATUS_BIT(status_variable, STATUS_BIT_IP_ACQU+«
IRED)

« #define IS_IP_LEASED(status_variable) GET_STATUS_BIT(status_variable, STATUS_BIT_IP_LEASED)

« #define IS_CONNECTION_FAILED(status_variable) GET_STATUS_BIT(status_variable, STATUS_BIT_«
CONNECTION_FAILED)

« #define IS_P2P_NEG_REQ_RECEIVED(status_variable) GET_STATUS_BIT(status_variable, STATUS «
BIT_P2P_NEG_REQ_RECEIVED)

« #define IS_SMARTCONFIG_DONE(status_variable) GET_STATUS_BIT(status_variable, STATUS_BIT_«
SMARTCONFIG_DONE)

« #define IS_SMARTCONFIG_STOPPED(status_variable) GET_STATUS_BIT(status_variable, STATUS_B+«
IT_SMARTCONFIG_STOPPED)

Enumerations

* enum e_StatusBits {
STATUS_BIT_CONNECTION = 0, STATUS _BIT_STA_CONNECTED, STATUS BIT_IP_ACQUIRED, ST+
ATUS_BIT_IP_LEASED,
STATUS_BIT_CONNECTION_FAILED, STATUS_BIT_P2P_NEG_REQ_RECEIVED, STATUS_BIT_SMA+~
RTCONFIG_DONE, STATUS_BIT_SMARTCONFIG_STOPPED }

» enum e_AppStatusCodes {
DEVICE_NOT_IN_STATION_MODE = -0x7D0, LAN_CONNECTION_FAILED = -0x7D0, SNTP_SEND_E«-
RROR = DEVICE_NOT_IN_STATION_MODE - 1, SNTP_RECV_ERROR = SNTP_SEND_ERROR - 1,
SNTP_SERVER_RESPONSE_ERROR = SNTP_RECV_ERROR - 1, STATUS_BIT_PING_DONE = 31, S«
TATUS_CODE_MAX = -0xBB8 }

» enum ConnectionMode { NOT_CONNECTED = 0, MODE_AP = 1, MODE_STATION =2}

Functions

* int generateAP (char xssid_name, char xpassword, _u8 security, int channel)
This function is used for generating an Access Point.
« int generateAPSaveProfile (char xssid_name, char xpassword, _u8 security, int channel)
This function is used for generating an Access Point.
« int generateAPFromProfile (int index)
This function is used for generating an Access Point with the profile saved at a given index.
+ int generateAPFromDefaultProfile ()
This function is used for generating an Access Point with default configuration defines on wifi_config.h.
« int generateAPFromProfileOnErrorDefault (int index)

This function is used for generating an Access Point with the profile saved at a given index. On error generate AP on
default profile.

» _i32 connectToAP (char xssid_name, char xpassword, _u8 security, int timeout)

This function is used for connecting to an Access Point.
» _i32 wlanSetMode (int new_mode)

This function is used for changing the operation mode of the device.
» _i32 setWlanPower (_u8 power)

This function is used for changing the operation power policy of the device.
+ _i32 setPowerPolicy (_u8 policy)

This function is used for setting the power policy of the device.
» _i32 sleepWlanDevice (int time)

This function is used to put the device in low power consumption mode.
» _i32 configureSimpleLinkToDefaultState ()

This function configures the SimpleLink device in its default state. It:




4.1 WifiFunctions.h File Reference 9

+ _i32 pingToConnectedDevice (int interval, int size, int request_timeout, int ping_attemp)
Pings to the last connected device.

» _i32 ping (int interval, int size, int request_timeout, int ping_attemp, _u32 ip)
Pings to an IP.

+ void waitClients ()
Thread that waits until the first client connects.

+ void prettylPv4 (_u32 val, _u8 *returnlP)
Gets IPv4 value into an array.

+ void printPrettylPv4_u32 (_u32 ip)

« void printPrettylPv4_char (_u8 xip)

+ void printPrettyMAC (_u8 xmacAddressVal)

« void printWifiParams (WifiConnectionState state)

* int disconnectFromAP ()
Disconnects from a WLAN Access point.

+ void getOwnMAC (_u8 xmacAddressVal)

* void setOwnMAC (_u8 *xmacAddress)
Changes the device's MAC Address.

e _u32 getOwnlP ()

* _u32 getHostlIP ()

» _u32 getStationlP ()

« int scanWifi (int scan_table_size, int channel, int timeout, SI_WIlanNetworkEntry_t xnetEntries)
Gets all available WiFi networks.

+ int scanWifiRestoreState (int scan_table_size, int channel, int timeout, SI_WIanNetworkEntry_t «netEntries)
Gets all available WiFi networks and restore previous state.

* int getLessSaturatedChannel ()
Gets the number of less saturated channel.

» WifiConnectionState getWifiState ()
Gets the wifi connection state.

+ void setWifiState (WifiConnectionState state)
Sets the wifi connection state.

» _i16 saveCurrentProfile ()
Saves the current profile.

» _i16 saveProfile (char xssid_name, char xpassword, _u8 security, int channel)
Saves the given profile.

+ _i16 getProfile (_i16 index, WifiConnectionState *profile)
Gets the stored profile at a given index.

+ _i16 restoreProfile (int index)
Restores the stored profile at a given index.

» _i16 removeProfiles ()

Removes all the stored profiles.

41.1 Detailed Description

Library for common WiFi functions.




10

File Documentation

41.2 Macro Definition Documentation

4.1.2.1 #define CLR_STATUS_BIT( status_variable, bit ) status_variable &= ~((unsigned long)1 < <(bit))

4.1.2.2 #define DEFAULT_CHANNEL 8

4.1.2.3 #define DEFAULT_PASSWORD "visilabap"

4.1.2.4 #define DEFAULT_SECURITY SL_SEC_TYPE_WPA_WPA2

4.1.2.5 #define DEFAULT_SSID "Myriad2Wifi"

4.1.2.6 #define GET_STATUS_BIT( status_variable, bit ) (0 !=(status_variable & ((unsigned long)1 < <(bit))))

4.1.2.7 #define IS_CONNECTED( status_variable ) GET_STATUS_BIT(status_variable, STATUS_BIT_CONNECTION)

4.1.2.8 #define IS_CONNECTION_FAILED( status_variable ) GET_STATUS_BIT(status_variable,

STATUS_BIT_CONNECTION_FAILED)

4.1.2.9 #define IS_IP_ACQUIRED( status_variable ) GET_STATUS_BIT(status_variable, STATUS_BIT_IP_ACQUIRED)

4.1.2.10 #define IS_IP_LEASED( status_variable ) GET_STATUS_BIT(status_variable, STATUS_BIT_IP_LEASED)

4.1.2.11 #define IS_P2P_NEG_REQ_RECEIVED( status_variable ) GET_STATUS_BIT(status_variable,
STATUS_BIT_P2P_NEG_REQ_RECEIVED)

4.1.2.12 #define IS_PING_DONE( status_variable ) GET_STATUS_BIT(status_variable, STATUS_BIT_PING_DONE)

41.213 #define IS_SMARTCONFIG_DONE( status_variable ) GET_STATUS_BIT(status_variable,
STATUS_BIT_SMARTCONFIG_DONE)

4.1.2.14 #define IS_SMARTCONFIG_STOPPED( status_variable ) GET_STATUS_BIT(status_variable,
STATUS_BIT_SMARTCONFIG_STOPPED)

41.2.15 #define IS_STA_CONNECTED( status_variable ) GET_STATUS_BIT(status_variable,
STATUS_BIT_STA_CONNECTED)

4.1.2.16  #define SET_STATUS_BIT( status_variable, bit ) status_variable |= ((unsigned long)1< <(bit))

41.2.17 #define SL_STOP_TIMEOUT OxFFFF

41.3 Enumeration Type Documentation

4.1.3.1 enum ConnectionMode

Enumerator
NOT_CONNECTED
MODE_AP

MODE_STATION

41.3.2

enum e_AppStatusCodes

Enumerator

DEVICE_NOT_IN_STATION_MODE




4.1 WifiFunctions.h File Reference

11

LAN_CONNECTION_FAILED
SNTP_SEND_ERROR
SNTP_RECV_ERROR
SNTP_SERVER_RESPONSE_ERROR
STATUS _BIT_PING_DONE
STATUS_CODE_MAX

41.3.3 enume_StatusBits

Enumerator

STATUS _BIT_CONNECTION

STATUS _BIT_STA_CONNECTED

STATUS _BIT_IP_ACQUIRED

STATUS BIT_IP_LEASED
STATUS_BIT_CONNECTION_FAILED
STATUS _BIT_P2P_NEG_REQ_RECEIVED
STATUS_BIT_SMARTCONFIG_DONE
STATUS _BIT_SMARTCONFIG_STOPPED

4.1.4 Function Documentation
4.1.4.1 _i32 configureSimpleLinkToDefaultState ( )

This function configures the SimpleLink device in its default state. It:

+ Sets the mode to STATION

» Configures connection policy to Auto and AutoSmartConfig
* Deletes all the stored profiles

« Enables DHCP

« Disables Scan policy

+ Sets Tx power to maximum

+ Sets power policy to normal

+ Unregisters mDNS services

« Remove all filters

Parameters

in none

Returns

On success, zero is returned. On error, negative is returned

41.4.2 _i32 connectToAP ( char x ssid_name, char x password, _u8 security, int timeout )

This function is used for connecting to an Access Point.




12

File Documentation

Parameters
in ssid_name | is the name of the Access point
in password | is the password of the Access Point
in security | is the security of the WiFi network. It can be:
* 0Oor SL_SEC_TYPE_OPEN
* 1or SL_SEC_TYPE_WEP
+ 20or SL_SEC_TYPE_WPA_WPA2
in timeout | time in seconds trying connect
Returns

On success, zero is returned. On error, negative is returned

4.1.4.3 intdisconnectFromAP ( )

Disconnects from a WLAN Access point.

This function disconnects from the connected AP

Warning

If the WLAN disconnection fails, we will be stuck in this function forever.

41.4.4 int generateAP ( char x ssid_name, char x password, _u8 security, int channel )

This function is used for generating an Access Point.

Parameters
in ssid_name | is the name of the Access point
in password | is the password of the Access Point
in security | is the security of the WiFi network. It can be:
* 0Oor SL_SEC_TYPE_OPEN
* 1or SL_SEC_TYPE_WEP
« 2or SL_SEC_TYPE_WPA_WPA2
in channel | is the channel where the network is generated
Returns

0 - if mode was set correctly

4.1.45 int generateAPFromDefaultProfile ( )

This function is used for generating an Access Point with default configuration defines on wifi_config.h.

Returns

error if less than 0




4.1 WifiFunctions.h File Reference

13

4.1.4.6 int generateAPFromProfile ( int index )

This function is used for generating an Access Point with the profile saved at a given index.




14 File Documentation

Parameters

in index | where the profile is saved

Returns

error if less than 0

4.1.4.7 int generateAPFromProfileOnErrorDefault ( int index )

This function is used for generating an Access Point with the profile saved at a given index. On error generate AP
on default profile.

Parameters

in index | where the profile is saved

Returns

error if less than 0

4.1.4.8 int generateAPSaveProfile ( char x ssid_name, char x password, _u8 security, int channel )

This function is used for generating an Access Point.

Parameters
in ssid_name | is the name of the Access point
in password | is the password of the Access Point
in security | is the security of the WiFi network. It can be:
* Oor SL_SEC_TYPE_OPEN
* 1or SL_SEC_TYPE_WEP
« 20or SL_SEC_TYPE_WPA_WPA2
in channel | is the channel where the network is generated
Returns

index of the saved profile, less than 0 on error

4.1.49 _u32getHostlP( )
4.1.4.10 int getLessSaturatedChannel ( )
Gets the number of less saturated channel.

Returns

the number of less saturated channel




4.1 WifiFunctions.h File Reference

15

41.411 _u32 getOwnIP( )
4.1.4.12 void getOWnMAC ( _u8 * macAddressVal )
4.1.413 _i16 getProfile ( _i16 index, WifiConnectionState x profile )

Gets the stored profile at a given index.




16

File Documentation

Parameters

in

index

where the profile is saved

Returns

less than 0 on error

4.1.4.14 _u32 getStationIP ( )

41.4.15 WifiConnectionState getWifiState ( )

Gets the wifi connection state.

Returns

the wifi connection state

41.416 _i32 ping ( int interval, int size, int request_timeout, int ping_attemp, _u32 ip )

Pings to an IP.
Parameters
in interval | interval between ping commands
in size | size of the ping package
in request_timeout | timeout of the response
in ping_attemp | times to retrying
in ip | Address to ping

4.1.417 _i32 pingToConnectedDevice ( int interval, int size, int request_timeout, int ping_attemp )

Pings to the last connected device.

Parameters
in interval | interval between ping commands
in size | size of the ping package
in request_timeout | timeout of the response
in ping_attemp | times to retrying

4.1.4.18 void prettylPv4 ( _u32 val, _u8 x returniP )

Gets IPv4 value into an array.

Parameters
in val | IP value code into a _u32 data type
out returnlP | IP value code into an array of four numbers

4.1.4.19 void printPrettylPv4_char ( _u8 x ip )

4.1.4.20 void printPrettylPv4_u32 ( _u32ip )




4.1 WifiFunctions.h File Reference

17

4.1.4.21 void printPrettyMAC ( _u8 * macAddressVal )

4.1.4.22 void printWifiParams ( WifiConnectionState state )

41.4.23 _i16 removeProfiles ( )

Removes all the stored profiles.

Returns

less than 0 on error

41.4.24 _i16 restoreProfile ( int index )

Restores the stored profile at a given index.

Parameters

in

index

where the profile is saved

Returns

less than 0 on error

41.4.25 _i16 saveCurrentProfile ( )

Saves the current profile.

Returns

index where the profile has been stored, less than 0 on error

41.4.26 _i16 saveProfile ( char x ssid_name, char x password, _u8 security, int channel )

Saves the given profile.

Parameters
in ssid_name | is the name of the Access point
in password | is the password of the Access Point
in security | is the security of the WiFi network. It can be:

+ Oor SL_SEC_TYPE_OPEN
+ 1orSL_SEC_TYPE_WEP

« 2or SL_SEC_TYPE_WPA_WPA2




18 File Documentation

in channel | is the channel where the network is generated

Returns

index where the profile has been stored, less than 0 on error

Note

this function only support MODE_AP profiles

Warning

this function only support ONE profile

4.1.4.27 int scanWifi ( int scan_table_size, int channel, int timeout, SI_WlanNetworkEntry_t « netEntries )

Gets all available WiFi networks.

Parameters
in scan_table_size | the maximum wifi networks to return
in channel | channel where scan. Have values between 1-11. Other value means all chan-
nels
in timeout | timeout in seconds for wifi network scan
out netEntries | array of found WiFi networks
Note

this function ends turning off the device, if you want to keep using it set on again

4.1.4.28 int scanWifiRestoreState ( int scan_table_size, int channel, int timeout, SI_WlanNetworkEntry_t x netEntries )

Gets all available WiFi networks and restore previous state.

Parameters
in scan_table _size | the maximum wifi networks to return
in channel | channel where scan. Have values between 1-11. Other value means all chan-
nels
in timeout | timeout in seconds for wifi network scan
out netEntries | array of found WiFi networks

4.1.4.29 void setOWnMAC ( _u8 * macAddress )

Changes the device's MAC Address.

Parameters

in macAddressVal | new MAC address

Warning

After that the device can have a malfunction

4.1.4.30 _i32 setPowerPolicy ( _u8 policy )

This function is used for setting the power policy of the device.




4.1 WifiFunctions.h File Reference

19

Parameters
in policy | is the power policy to set. It can be:
« SL_ALWAYS_ON_POLICY
« SL_NORMAL_POLICY
« SL_LOW_POWER_POLICY
« SL_LONG_SLEEP_INTERVAL_POLICY
Returns

On success, zero is returned. On error, negative is returned

4.1.4.31 void setWifiState ( WifiConnectionState state )

Sets the wifi connection state.

41.4.32 _i32 setWlanPower ( _u8 power )

This function is used for changing the operation power policy of the device.

Parameters
in power | is a number between 0-15, as dB offset from max power. 0 will set maximum
power
Returns

On success, zero is returned. On error, negative is returned

4.1.4.33 _i32 sleepWlanDevice ( int time )

This function is used to put the device in low power consumption mode.

Parameters

in time | is a value between 100-2000 ms

Returns

On success, zero is returned. On error, negative is returned

4.1.4.34 void waitClients ( )

Thread that waits until the first client connects.

4.1.4.35 _i32 wlanSetMode ( int new_mode )

This function is used for changing the operation mode of the device.




20 File Documentation

Parameters
in new_mode | is the name of the Access point. It can be:
« ROLE_STA
« ROLE_AP
« ROLE_P2P
Returns

new_mode value if it was successfully completed. Less than 0 on error




Annex 2
Camera






Contents

1 Data Structure Index

1.1 DataStructures . . . . . . . e
2 File Index
21 FileList . . . . . e
3 Data Structure Documentation
3.1 bitstring Struct Reference . . . . . . . . . e
3.1.1  Field Documentation . . . . . . . . . . . .
3111 length . . . L
3.1.1.2 value . . ..
3.2 colorYCbCr Struct Reference . . . . . . . . . .
3.2.1  Field Documentation . . . . . . . . . . ..
3211 Cb . e e
3.21.2  Cr . e
3213 Y
4 File Documentation
4.1 camera.h File Reference . . . . . . . . . .
41.1 Detailed Description . . . . . . . . e
4.1.2 Macro Definition Documentation . . . . . . . . ... oL
4121 CAM_BPP . . . . e
4122 CAM_FRAME_SIZE_BYTES . . . . . . . . . . i
4123 CAM_WINDOW_START_COLUMN . . . . . . .. ... .. ... .. ...,
4124 CAM_WINDOW_START_ROW . . . . . . . . e
4125 DDR_AREA . . . . e
4126 FIRST_INCOMING_BUF_ID. . . . . .. . .. . .
4127 FIRST_OUTGOING_BUF_ID . . . . .. . . . i
4128 MAX_USED BUF . . . . . . . . e
4129 WINDOW_HEIGHT . . . . . . . . ... e
41210 WINDOW_WIDTH . . . . . . . . e e e e
4.1.3 Function Documentation . . . . . . . ...

w

o o1 o o0 o0 o0 o0 o0 oG

o 0 0 0 0 0 0 0 0 0 © o0 o0 N N



iv CONTENTS
4.1.3.1  AllocateNextCamFrameBuf . . . . . . ... .. ... .. ... ... .. ... 8

4132 getdpegFrame . . . . . . . 9

4183 init_camera. . . . . . ... e e e e 9

4.1.3.4 1o0p_Camera . . . . . . . i e e 9

4.1.35 prepare_Camera . . . . . . . .. u i e e e e e e e 9

4.1.3.6 prepareDriverData . . . . . . . . .. 9

4.1.3.7 reconfigure_camera . . . . . ... ... 9

4.1.3.8 standby camera . . . . . . .. 9

41.3.9 start._camera . . . . . .. e e e e 10
4.1.3.10 stop_camera . . . . . . ... 10
4.1.3.11 take_snapshot . . . . . . . . .. 10
4.1.3.12 wakeup_Camera . . . . . . v v i e e e e e 10

4.1.4 \Variable Documentation . . . . . . . . . .. 10
4141 iMage . . . . e 10

41.4.2 image_size in_bytes. . . . . . . Lo 10

41.4.3 last_frame_buffer . . . . . ... . . 10

4.2 jpeg_codec.h File Reference . . . . . . . . . . . . 11
4.2.1 Macro Definition Documentation . . . . . . . . . ... 12
4211 BYTE . . . . e 12

4212 Cb . . . e 12

4213  Cr . e 12

4214 DWORD . . . . . . e 12

4215 MAXBUFFERJPEG . . . . . . . . . . . e 12

4216 SBYTE . . . . . . e 12

4217 SDWORD . . . . . . e 12

4218 SWORD . . . . . . e 12

4219 WORD . . . . . e 12
42110 writebyte . . . . . L 12
42111 writeword . . .. L L e 12
42112 Y e e e e 12

4.2.2 Function Documentation . . . . . . . . ... 12
4221 convert2dpeg . . . . .. L 12




Chapter 1

Data Structure Index

1.1 Data Structures

Here are the data structures with brief descriptions:

Ditstring . . . . .
ColorYCDCr . . . e e e



Data Structure Index




Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

camera.h
Management library for Camera . . . . . . . . . ...
jpeg_codec.h . .o L e e e



File Index




Chapter 3

Data Structure Documentation

3.1 bitstring Struct Reference

#include <jpeg_codec.h>

Data Fields
« BYTE length
+ WORD value
3.1.1 Field Documentation
3.1.1.1 BYTE length
3.1.1.2 WORD value

The documentation for this struct was generated from the following file:

* jpeg_codec.h

3.2 colorYCbCr Struct Reference

#include <jpeg_codec.h>

Data Fields

« BYTEY
« BYTE Cb
- BYTE Cr
3.2.1 Field Documentation

3.21.1 BYTECDb

3212 BYTECr



6 Data Structure Documentation

3213 BYTEY
The documentation for this struct was generated from the following file:

* jpeg_codec.h




Chapter 4

File Documentation

4.1 camera.h File Reference

Management library for Camera.

#include <Boardl82Api.h>
#include <CamGenericApi.h>
#include <stdio.h>
#include "jpeg_codec.h"
Include dependency graph for camera.h:

camera.h

/

Board182Api.h CamGenericApi.h stdio.h

jpeg_codec.h

Macros

« #define MAX_USED_BUF 3

- #define FIRST_INCOMING_BUF_ID 1

- #define FIRST_OUTGOING_BUF_ID 0

- #define CAM_WINDOW_START_COLUMN 0

- #define CAM_WINDOW_START_ROW 8

* #define WINDOW_WIDTH 1920

« #define WINDOW_HEIGHT 1080

« #define CAM_BPP 1

« #define CAM_FRAME_SIZE_BYTES (WINDOW_WIDTH * WINDOW_HEIGHT x CAM_BPP)
« #define DDR_AREA __attribute__ ((section(".ddr.bss")))

Functions

« void prepareDriverData (void)
« frameBuffer x AllocateNextCamFrameBuf (void)



8 File Documentation

* int loop_camera ()

* int stop_camera ()

* intinit_camera ()

* int start_camera ()

* int standby_camera ()

* int wakeup_camera ()

* void prepare_camera ()

« int reconfigure_camera ()
« void take_snapshot ()

« void getJpegFrame ()

Variables

« volatile unsigned char image [368640]
* intimage_size_in_bytes
* colorYCDbCr last_frame_buffer [122880]

41.1 Detailed Description

Management library for Camera.

4.1.2 Macro Definition Documentation

4.1.2.1 #define CAM_BPP 1

41.2.2 #define CAM_FRAME_SIZE_BYTES (WINDOW_WIDTH « WINDOW_HEIGHT « CAM_BPP)
41.2.3 #define CAM_WINDOW_START_COLUMN 0

4.1.2.4 #define CAM_WINDOW_START_ROW 8

41.2.5 #define DDR_AREA __attribute__((section(".ddr.bss")))
41.2.6 #define FIRST_INCOMING_BUF_ID 1

41.2.7 #define FIRST_OUTGOING_BUF_ID 0

4.1.2.8 #define MAX_USED_BUF 3

Application Includes

41.2.9 #define WINDOW_HEIGHT 1080

4.1.2.10 #define WINDOW_WIDTH 1920

41.3 Function Documentation
4.1.3.1 frameBufferx AllocateNextCamFrameBuf ( void )

This is the callback functons to be called on interrupts (and implicitly the buffers management behavior and notifi-
cation behavior): getFrame/getBlock/notification cbf.

Returns

Pointer to the frameBuffer where the next frame should be stored.




4.1 camera.h File Reference 9

4.1.3.2 void getdpegFrame ( )

The frame is stored in 'last_frame_buffer' and compressed and stored in JPEG in 'image’. 'image_size_in_bytes'
contains the size of the image buffer 'image’.

Returns

-1 if there was an error. 0 otherwise.

41.3.3 intinit_camera( )

Performs al the camera configuration and initialises the camera.

Returns

-1 if there was an error. 0 otherwise.

41.3.4 intloop_camera( )

Performs al the camera configuration, initialises and starts the camera, and waits in a loop to continuously capture
images.

Returns

-1 if there was an error. 0 otherwise.

4.1.3.5 void prepare_camera( )

Performs al the camera configuration, initialises and starts the camera, and puts the camera into 'hot standby' mode.

Returns

-1 if there was an error. 0 otherwise.

4.1.3.6 void prepareDriverData ( void )

Initialises the data necessary to use the camera (CAM_B1).

4.1.3.7 intreconfigure_camera( )

Reconfigures camera interrupts. TODO: Complete the function.

Returns

-1 if there was an error. 0 otherwise.

41.3.8 intstandby_camera( )

Puts the camera into 'hot standby' mode.

Returns

-1 if there was an error. 0 otherwise.




10 File Documentation

41.3.9 intstart_camera( )

Starts the camera.

Returns

-1 if there was an error. 0 otherwise.

4.1.3.10 int stop_camera( )

Stops the camera.

Returns

-1 if there was an error. 0 otherwise.

4.1.3.11 void take_snapshot ( )

Wakes up and puts in standby the camera in order to capture a frame. The frame is stored in 'last_frame_buffer'
and compressed and stored in JPEG in 'image’. 'image_size_in_bytes' contains the size of the image buffer 'image’.

Returns

-1 if there was an error. 0 otherwise.

4.1.3.12 int wakeup_camera( )

Wakes up the camera from standby mode.

Returns

-1 if there was an error. 0 otherwise.

4.1.4 Variable Documentation
4.1.4.1 volatile unsigned char image[368640]

Where the jpeglmage is stored. 368640 is the maximum needed by an image of 480x256x3

41.4.2 intimage_size_in_bytes
41.4.3 colorYCbCr last_frame_buffer[122880]

Where the yuv is stored 122880 is the maximum needed by an image of 480x256




4.2 jpeg_codec.h File Reference 11

4.2 jpeg_codec.h File Reference

This graph shows which files directly or indirectly include this file:

jpeg_codec.h

camera.h

Data Structures

+ struct APPQinfotype
« struct SOFQinfotype
« struct DQTinfotype
« struct DHTinfotype
« struct SOSinfotype
« struct colorYCbCr

« struct bitstring

Macros

#define MAXBUFFERJPEG 368640

#define BYTE unsigned char

#define SBYTE signed char

#define SWORD signed short int

#define WORD unsigned short int

#define DWORD unsigned long int

#define SDWORD signed long int

#define Y(R, G, B) ((BYTE)( (YRtab[(R)]+YGtab[(G)]+YBtab[(B)])>>16 ) - 128)
#define Cb(R, G, B) ((BYTE)( (CbRtab[(R)]+CbGtab[(G)]+CbBtab[(B)])>>16) )
#define Cr(R, G, B) ((BYTE)( (CrRtab[(R)]+CrGtab[(G)]+CrBtab[(B)])>>16) )
#define writebyte(b) {image[image_size_in_bytes]=b;image_size_in_bytes++; }

#define writeword(w) {image[image_size_in_bytes]=(w)/256;image_size_in_bytes++;image[image_size_in«
_bytes]=(w)%256;image_size_in_bytes++;}

Functions

+ void convert2Jpeg (colorYCbCr ximageBuffer, WORD Ximage_original, WORD Yimage_original)




12

File Documentation

4.2.1 Macro Definition Documentation

4.2.1.1 #define BYTE unsigned char

4212 #defineCb( R, G, B )((BYTE)( (CbRtab[(R)}+CbGtab[(G)]+CbBtab[(B)])>>16))

4213 #defineCr( R, G, B )((BYTE)( (CrRtab[(R)]+CrGtab[(G)]+CrBtab[(B)])>>16))

4.2.1.4 #define DWORD unsigned long int

4215 #define MAXBUFFERJPEG 368640

4.21.6 #define SBYTE signed char

4.2.1.7 #define SDWORD signed long int

4.2.1.8 #define SWORD signed short int

4.2.1.9 #define WORD unsigned short int

4.2.1.10 #define writebyte( b ) {image[image_size_in_bytes]=b;image_size_in_bytes++;}

4.2.1.11 #define writeword( w ) {image[image_size_in_bytes]=(w)/256;image_size_in_bytes++;image[image_«
size_in_bytes]=(w)%256;image_size_in_bytes++;}

42112 #defineY( R, G, B )((BYTE)((YRtab[(R)}+YGtab[(G)]+YBtab[(B)])>>16)- 128)

4.2.2 Function Documentation

4.2.2.1 void convert2dpeg ( colorYCbCr x imageBuffer, WORD Ximage_original, WORD Yimage_original )

Converts an image in YCbCr (YUV) to JPEG. The result is stored in 'image'. Variable'image_size_in_bytes' contains
the size of the image buffer 'image’.

Parameters

ximageBuffer

Pointer to the buffer where the image is stored.

Ximage_original

Width of the image.

Yimage_original

Height of the image.




Annex 3
RTSP






Contents

1 Data Structure Index

1.1

Data Structures . . . . .. ..

2 File Index

2.1

FileList . .. ... ......

3 Data Structure Documentation

3.1

3.2

3.3

3.4

3.5

linkedlist Struct Reference . . .
3.1.1  Field Documentation .
3.1.1.1  current . . .
3.1.12 head .. ..
3.1.13 leaf . . . ..
3.1.1.4 size. .. ..
node Struct Reference . . . .
3.2.1 Field Documentation .
3.21.1 next .. ..
3212 prev .. ..
3.2.1.3 value . . ..
RtspClient Struct Reference . .
3.3.1 Detailed Description .
3.3.2 Field Documentation .
3.3.2.1 session. . .
3.3.22 socketlD . .
RtspServer Struct Reference .
3.4.1 Detailed Description .
3.4.2 Field Documentation .
3.4.2.1 LocalAddr .

3.4.2.2 nonBlocking
3.4.23 ServerSockiD
RtspSession Struct Reference
3.5.1 Detailed Description .

3.5.2 Field Documentation .

w

W O 0 0 0 0 00 N N N N N N oo o o o o o oo oo oG



iv CONTENTS
3.5.2.1 clientSockID . . . . ... 8

3.522 messageN . . . .. 8

3523 sessionlD .. ... 8

3.5.24 state . . . .. 8

4 File Documentation 9
4.1 linkedlist.h File Reference . . . . . . . . . . 9
4.1.1  Macro Definition Documentation . . . . . . . . . ..o 10
4111 LL_VERSION . . . . . . e 10

4.1.2 Typedef Documentation . . . . . . . . . . . . e 10
4121 em ..o e 10

4.1.3 Function Documentation . . . . . . . . .. 10
41381 L clear . . . . . . . e e 10

4182 |l create . . . . . . e e 10

4133 ll_delete . . . . . . . e 10

4134 1LdUMP . « o o 10

4185 lexists . . . . . e e 10

41.38.6 ll_get first . . . . . 11

4.1.3.7 ll_getindex . . . . . . . . e 11

418.8 |l getlast . . . . . . e 11

4139 ll_getnext . . . . . . . e 11

4.1.3.10 ll_get prev . . . . . 11

4.1.3.11 |ll_item_position . . . . . . . 11

4.1.3.12 ll_pop_first . . . . . 11

4.1.3.13 ll_pop_last . . . . . . 11

41314 ll_print . . . .. 11

4.1.3.15 |l print_filter . . . . . . 11

41.3.16 |ll_push_first . . . . . . . . 11

4.1.3.17 ll_push_last . . . . . . . 11

4.1.3.18 ll_remove_item . . . . . . . . L e e e e e 11

4.1.83.19 Isort . . . . . e e 11

4.2 rtsp.hFile Reference . . . . . . . . e 11
4.2.1 Macro Definition Documentation . . . . . . . . . ..o 13
4211 BUF_SIZE . . . . . e 13

4212 KdpegHeaderSize . . . . . . . . . .. 13

4213 KRtpHeaderSize . . . . . . . . .. 13

4214 PACKAGE_LENGHT . . ... . . . ... e 13

4215 PORT_NUM . . . . 13

4216 RTP_MARKER END . . . . . . . . . . ... e 13

4217 RTP_MARKER_NO_END . . . .. ... . ... .. ... .. ... ... ..., 13




CONTENTS v
422 Typedef Documentation . . . . . . . . . . . . . 13
4221 RtspClient . . . . . 13
4222 RispServer . . . . . e 13
4223 RispSession . . . . ... 13
4224 RispState . . . . .. 13

4.2.3 Enumeration Type Documentation . . . . . . . . . . ..o 13
4231 RtspState . . . . . . .. 13

4.2.4 Function Documentation . . . . . . . . . .. 14
4241 closeSession . . . . . .. 14
4242 compare RtspClients . . . . . . . . . . .. ... 15
4243 generateSessionID . . . . ... 15
4244 RTSP_step. . . . . o e 15

4245 runRTSPServer . . . . . . . . e 15
4246 sendlmage . . . . . .. L e 15
4247 sendToAllClients . . . . . . . . . . e 15

4248 set_header . . . . . . . . . e 16

4249 startRTSPServer . . . . . . . . e e 17







Chapter 1

Data Structure Index

1.1 Data Structures

Here are the data structures with brief descriptions:

linkedlist . . . . . . e e e
NOOE . . . o e e e
RtspClient . . . . . .
RISpServer . . . . e e e e e
RispSession . . . . . . e



Data Structure Index




Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

linkedlist.h . . . . . . L e e e
SN e e



File Index




Chapter 3

Data Structure Documentation

3.1 linkedlist Struct Reference

#include <linkedlist.h>

Collaboration diagram for linkedlist:

prev
nc;je _ /next
| head
current
| leaf
I
linkedlist

Data Fields

« jtem * head

« item x* leaf

 item x current

* unsigned int size
3.1.1 Field Documentation
3.1.1.1  itemsx current

3.1.1.2 itemx head

3.1.1.3 item: leaf



6 Data Structure Documentation

3.1.1.4 unsigned int size

The documentation for this struct was generated from the following file:

« linkedlist.h

3.2 node Struct Reference

#include <linkedlist.h>

Collaboration diagram for node:

@~ Prev
node [T next

Data Fields

* void * value
« struct node * prev

« struct node * next

3.21 Field Documentation
3.2.1.1 struct nodex next
3.21.2 struct nodex prev
3.2.1.3 voidx value

The documentation for this struct was generated from the following file:

« linkedlist.h

3.3 RtspClient Struct Reference

#include <rtsp.h>




3.4 RtspServer Struct Reference

Collaboration diagram for RtspClient:

RtspSession

'\

| session
I

RtspClient

Data Fields

» RtspSession * session
* int socketlD

3.3.1 Detailed Description

Information about the client.

3.3.2 Field Documentation
3.3.2.1 RtspSession: session
3.3.2.2 int socketlD

The documentation for this struct was generated from the following file:

* rtsp.h

3.4 RtspServer Struct Reference

#include <rtsp.h>

Data Fields

» SISockAddrin_t LocalAddr
» _i32 ServerSockID
« int nonBlocking

3.4.1 Detailed Description

Information about the server.




Data Structure Documentation

3.4.2 Field Documentation
3.4.2.1 SISockAddrin_t LocalAddr
3.4.2.2 int nonBlocking

3.4.2.3 _i32 ServerSockID

The documentation for this struct was generated from the following file:

* rtsp.h

3.5 RtspSession Struct Reference

#include <rtsp.h>

Data Fields

» RtspState state
* int sessionID

* int clientSockID
+ int messageN

3.5.1 Detailed Description

Information about the session.

3.5.2 Field Documentation
3.5.2.1 intclientSockiD

3.5.2.2 int messageN

3.5.2.3 intsessionlD

3.5.2.4 RtspState state

The documentation for this struct was generated from the following file:

* rtsp.h




Chapter 4

File Documentation

4.1 linkedlist.h File Reference

#include <stdio.h>
Include dependency graph for linkedlist.h:

linkedlist.h

'

stdio.h

This graph shows which files directly or indirectly include this file:

linkedlist.h

T

rtsp.h

Data Structures

« struct node



10

File Documentation

struct linkedlist

Macros

#define LL_VERSION "1.0.0-b5"

Typedefs

typedef struct node item

Functions

4141

41141

41.2

4.1.21

413

4.1.3.1

41.3.2

4.1.3.3

41.3.4

4.1.3.5

linkedlist * Il_create ()

int II_push_first (linkedlist *, void )

int II_push_last (linkedlist *, void x)

void * Il_pop_first (linkedlist *)

void x II_pop_last (linkedlist *)

void * Il_get_index (linkedlist *list, unsigned int index)

void x II_get_first (linkedlist x)

void * Il_get_last (linkedlist *)

void x II_get_next (linkedlist *)

void * Il_get_prev (linkedlist *)

int II_exists (linkedlist *, void *, int(x)(void *, void x))

int Il_item_position (linkedlist *, void x, int(x)(void *, void x))
int Il_remove_item (linkedlist *, void x*, int(x)(void *, void x))
int II_sort (linkedlist *, int(x)(void *, void *))

int Il_clear (linkedlist *, void(x)(void *))

int II_delete (linkedlist *, void(x)(void x*))

void Il_print (linkedlist *, FILE x*, void(x)(FILE *, void x))
void II_print_filter (linkedlist *, FILE *, void(x)(FILE *, void ), int(x)(void x*))
void Il_dump (linkedlist *, FILE *, void(*)(FILE x, void x))

Macro Definition Documentation

#define LL_VERSION "1.0.0-b5"

Typedef Documentation

typedef struct node item

Function Documentation

int ll_clear ( linkedlist * , void(x)(void *) )

linkedlist: Il_create ( )

int I_delete ( linkedlist * , void(x)(void *) )

void II_dump ( linkedlist *, FILE *, void(x)(FILE , void *) )

int Il_exists ( linkedlist x, void x , int(x)(void *, void x) )




4.2 rtsp.h File Reference

4.1.3.6 voidx Il_get_first ( linkedlist x )

4.1.3.7 voidx Il_get_index ( linkedlist x* list, unsigned int index )

4.1.3.8 voidx Il_get_last ( linkedlist * )

4.1.3.9 voidx Il_get_next ( linkedlist * )

4.1.3.10 voidx ll_get_prev ( linkedlist « )

4.1.3.11 intll_item_position ( linkedlist * , void * , int(x)(void x, void *) )
4.1.3.12 voidx ll_pop_first ( linkedlist x )

4.1.3.13 void:x ll_pop_last ( linkedlist « )

4.1.3.14 void Il_print ( linkedlist * , FILE %, void(x)(FILE *, void *) )
4.1.3.15 void Il_print_filter ( linkedlist x , FILE x, void(x)(FILE *, void ), int(:)(void ) )
4.1.3.16 intll_push_first ( linkedlist *, void x )

4.1.3.17 intll_push_last ( linkedlist x, void * )

4.1.3.18 intll_remove_item ( linkedlist *, void x , int(x)(void *, void *) )

4.1.3.19 intll_sort ( linkedlist * , int(x)(void *, void *) )

4.2 rtsp.h File Reference

#include <stdio.h>
#include <stdlib.h>
#include "simplelink.h"
#include "linkedlist.h"
#include "camera.h"
finclude "time.h"
#include "sys/time.h"
Include dependency graph for rtsp.h:

stdlib.h simplelink.h linkedlist.h camera.h time.h sys/time.h

stdio.h

Data Structures

« struct RtspSession




12 File Documentation

« struct RtspServer
« struct RtspClient

Macros

+ #define PORT_NUM 8554 /x Port where the server accepts connectionss/

RTSP Server implementation.
 #define BUF_SIZE 1400 /x Size of the buffer where data is storedx*/
« #define KRtpHeaderSize 12 /x Size of the RTP headerx/
« #define KJpegHeaderSize 8 /x Size of the special JPEG payload headerx/
+ #define PACKAGE_LENGHT 1024 /+ Maximun packet sizex/
« #define RTP_MARKER_END 0x80 /x Last packet of the framesx/
+ #define RTP_MARKER_NO_END 0 /* Not the last packet of the framex/

Typedefs

« typedef enum RispState RtspState

« typedef struct RtspSession RitspSession
« typedef struct RtspServer RtspServer

* typedef struct RitspClient RitspClient

Enumerations

- enum RtspState { RTSP_STATE_STOP, RTSP_STATE_PAUSE, RTSP_STATE_PLAY, RTSP_STATE_ |
NIT }

Functions

* int generateSessionID ()
Generates a session ID for the RTSP server.

« void startRTSPServer (RtspServer xserver, _u8 xownlP)
Initialises the data necessary for the RTSP server.

« void runRTSPServer (RtspServer xserver)

Starts accepting client connections and streaming.
« void sendToAllClients ()

Sends the stream to several clients.
+ void RTSP_step (RtspSession xsession)

Performs each step of the streaming configuring the message and sending the current image from the camera.
+ void sendlmage (char ximage, int width, int height, int length, int xsequenceNumber, int socketID, int times-
tamp) void stopRTSPServer(RtspServer xserver)
Sends the current image. If the final packet is larger than the maximun packet size, the image is fragmented and sent
in several packages.
+ void closeSession (RtspSession *session)
Closes the RTSP session.
« void set_header (char *RtpBuf, int RtpPacketSize, int m_SequenceNumber, int m_Timestamp, int offset, int
rtpMarker, int width, int height)
Sets the packet header for the image to sent.
« int compare_RtspClients (void xitem1, void *item2)

Compares two clients.




4.2 rtsp.h File Reference 13

4.2.1 Macro Definition Documentation

4.2.1.1 #define BUF_SIZE 1400 /* Size of the buffer where data is storedx/
4.21.2 #define KIpegHeaderSize 8 /x Size of the special JPEG payload header:/
4.2.1.3 #define KRtpHeaderSize 12 /x Size of the RTP headerx/

4.2.1.4 #define PACKAGE_LENGHT 1024 /+ Maximun packet sizex/

4.2.1.5 #define PORT_NUM 8554 /x Port where the server accepts connections:/

RTSP Server implementation.

Implementation of the RTSP Server. This server supports multi-client streaming and JPEG-compressed video.

4.21.6 #define RTP_MARKER_END 0x80 / Last packet of the frame:x/

4.21.7 #define RTP_MARKER_NO_END 0/ Not the last packet of the frame:x/
4,22 Typedef Documentation

4.2.2.1 typedef struct RtspClient RtspClient

Information about the client.

4.2.2.2 typedef struct RtspServer RtspServer

Information about the server.

4.2.2.3 typedef struct RtspSession RispSession

Information about the session.

4.2.2.4 typedef enum RispState RispState

Possible states of the server.

4.2.3 Enumeration Type Documentation
4.2.3.1 enum RtspState

Possible states of the server.

Enumerator
RTSP_STATE_STOP
RTSP_STATE_PAUSE
RTSP_STATE_PLAY
RTSP_STATE_INIT




14 File Documentation

4.2.4 Function Documentation
4.2.4.1 void closeSession ( RtspSession x session )

Closes the RTSP session.




4.2 rtsp.h File Reference 15

Parameters

in session | The RtspSession struct that contains the session information.

4.2.4.2 int compare_RtspClients ( void x item1, void * item2 )

Compares two clients.

Parameters
in item1 | An RtspClient.
in item2 | An RtspClient.
Returns

0 - if the two clients are different

4.2.4.3 int generateSessionlD ( )

Generates a session ID for the RTSP server.

4.2.4.4 void RTSP_step ( RtspSession x* session )

Performs each step of the streaming configuring the message and sending the current image from the camera.

Parameters

in session | The RtspSession struct that contains the session information.

4.2.45 void runRTSPServer ( RtspServer x server )

Starts accepting client connections and streaming.

Parameters

] in server | The RtspServer struct that contains the server params.

4.2.4.6 void sendimage ( char x image, int width, int height, int length, int x sequenceNumber, int socketID, int timestamp )

Sends the current image. If the final packet is larger than the maximun packet size, the image is fragmented and
sent in several packages.

Closes the server socket and deletes all the clients.
Parameters

] in server \ The RtspServer struct that contains the server params.

4.2.4.7 void sendToAlIClients ( )

Sends the stream to several clients.




16 File Documentation

4.2.4.8 void set_header ( char x RipBuf, int RtpPacketSize, int m_SequenceNumber, int m_Timestamp, int offset, int
ripMarker, int width, int height )

Sets the packet header for the image to sent.




4.2 rtsp.h File Reference

17

Parameters
in RtpBuf | Where the header is stored.
in RtpPacketSize | Size of the final package (including header and body)
in m_Sequence« | Sequence number of the current package.
Number
in m_Timestamp | Timestamp of the current frame.
in offset | Is the offset of the current packet in the JPEG frame data.
in rtoMarker | If the packet is the last one of the JPEG frame (0x80) or not (0).
in width | Image width.
in height | Image height.

4.2.4.9 void startRTSPServer ( RtspServer * server, _u8 x ownlP )

Initialises the data necessary for the RTSP server.

Parameters
in server | The RtspServer struct that contains the server params.
in ownlP | The server IP address.




18

File Documentation




Annex 4
Buttons, Switches and
LEDs






Contents

1 File Index

1.1 FileList . . . . . e

2 File Documentation

2.1 LEDs.hFile Reference . . . . . . . . . . e
2.1.1 Detailed Description . . . . . . . .

2.1.2 Function Documentation . . . . . . . ...

2.1.2.1  enableButtonsSwitchAndLeds() . . . . . . . . . . . ...

2.1.2.2 readButton(u8 xbuttonState) . . . . . . ... .o Lo

2.1.23 readDip(u8 xdipState) . . . . . . . ..

2.1.24 setLedModeConstant(u8led,u8state) . . ... ... ... ... ... .....

2.1.25 setLedModeContinuousPulsed(u8 led, enum Duration duration, enum DutyCycle
dutyCycle) . . . . . e e e

2.1.2.6 setLedModePowerStatus(u8led) . . . . .. .. . ... .. ...

2.1.2.7 setLedModePulsedSequence(u8 led, enum Sequencelength sequencelength,
enum Duration duration, enum DutyCycle dutyCycle) . . . . . . ... ... ...

Index

B T T N ¢S B 7 )

N






Chapter 1

File Index

1.1 File List

Here is a list of all documented files with brief descriptions:

LEDs.h
Provides access to push buttons, DIP switchesandLEDs . . . . . . . .. ... ... ... ..



File Index




Chapter 2

File Documentation

2.1 LEDs.h File Reference

Provides access to push buttons, DIP switches and LEDs.

#include <mv_types.h>
#include <DrvI2cDefines.h>

Enumerations

» enum SequencelLength { SEQ_1_PULSE =0 << 4, SEQ_2_PULSES =1 << 4,SEQ_4 PULSES =2 <<
4,SEQ_7_PULSES =3 << 4}

« enum Duration { DUR_1000_MS = 0 << 2, DUR_250_MS = 1 << 2, DUR_125_MS = 2 << 2, DUR_62
MS=3<<2}

+ enum DutyCycle { DUTY_1_TO_1=0, DUTY_1_TO_2=1,DUTY_1_TO_3=2,DUTY_1_TO_7 =3}

Functions

» |12CM_StatusType enableButtonsSwitchAndLeds ()

Enables manual control for LEDs, push buttons and the DIP switch. Needs to be called before any other function in
this file can be used.

» |2CM_StatusType readDip (u8 *dipState)
Reads the current state of the first of the DIP switches.
» |12CM_StatusType readButton (u8 xbuttonState)
Reads the current state of the push buttons.
» |2CM_StatusType setLedModeConstant (u8 led, u8 state)
Switches a LED on or off.
» |12CM_StatusType setLedModeContinuousPulsed (u8 led, enum Duration duration, enum DutyCycle duty«
Cycle)
Switches a LED into a mode in which it continuously emits light pulses.

+ 12CM_StatusType setLedModePulsedSequence (u8 led, enum SequencelLength sequencelLength, enum Du-
ration duration, enum DutyCycle dutyCycle)

Switches a LED into a mode in which it emits a sequence of light pulses of a defined length.
» |12CM_StatusType setLedModePowerStatus (u8 led)

Switches a LED into power state status mode.



4 File Documentation

2.1.1 Detailed Description

Provides access to push buttons, DIP switches and LEDs.

2.1.2 Function Documentation
2.1.2.1 12CM_StatusType enableButtonsSwitchAndLeds ( )

Enables manual control for LEDs, push buttons and the DIP switch. Needs to be called before any other function in
this file can be used.
Returns

An error code in case of failure, I2CM_STAT_OK otherwise.

2.1.2.2 12CM_StatusType readButton ( u8  buttonState )

Reads the current state of the push buttons.

Parameters

buttonState | The state of push buttons is written to this pointer. In case of an error the value is not changed.
The value written can be one of the following: 0 - No button pushed. 1 - Button #1 pushed. 2
- Button #2 pushed. 3 - Both buttons pushed.

Returns

An error code in case of failure, I2CM_STAT_OK otherwise.

2.1.2.3 12CM_StatusType readDip ( u8  dipState )

Reads the current state of the first of the DIP switches.
Parameters

dipState | The state of DIP switch #1 (0 or 1) is written to this pointer. In case of an error the value is
not changed.

Returns

An error code in case of failure, I2CM_STAT_OK otherwise.

2.1.2.4 12CM_StatusType setLedModeConstant ( u8 led, u8 state )

Switches a LED on or off.

Parameters

led | The ID of the LED to switch. Either 0 or 1.

state | The desired state of the LED (0: off, 1: on).

Returns

An error code in case of failure, I2CM_STAT_OK otherwise.

2.1.2.5 [12CM_StatusType setLedModeContinuousPulsed ( u8 /ed, enum Duration duration, enum DutyCycle dutyCycle )

Switches a LED into a mode in which it continuously emits light pulses.




2.1 LEDs.h File Reference

Parameters

led | The ID of the LED to switch. Either 0 or 1.

duration | The 'on' time of the LED.

dutyCycle | The on/off ratio of the LED.

Returns

An error code in case of failure, I2CM_STAT_OK otherwise.

2.1.2.6 12CM_StatusType setLedModePowerStatus ( u8 led )

Switches a LED into power state status mode.

This mode can indicate one of the following 4 states as follows:

» power sequence failure: 4 pulses, 1000ms 'on' time, on/off ratio: 1:1
» PVDD low: continuous pulsed, 250ms 'on' time, on/off ratio: 1:3
» 'on' state: constant on

* 'sleep’ state: continuous pulsed, 250ms 'on' time, on/off ratio: 1:7

Parameters

led | The ID of the LED to switch. Either 0 or 1.

Returns

An error code in case of failure, I2CM_STAT_OK otherwise.

2.1.2.7 12CM_StatusType setLedModePulsedSequence ( u8 led, enum SequenceLength sequenceLength, enum Duration
duration, enum DutyCycle dutyCycle )

Switches a LED into a mode in which it emits a sequence of light pulses of a defined length.

Parameters

led | The ID of the LED to switch. Either 0 or 1.

sequencelLength | Determines the length of the pulse sequence.

duration | The value determining the 'on' time of the LED.

dutyCycle | Determines the on/off ratio of the LED.

Returns

An error code in case of failure, I2CM_STAT_OK otherwise.




File Documentation




Index

enableButtonsSwitchAndLeds
LEDs.h, 4

LEDs.h, 3
enableButtonsSwitchAndLeds, 4
readButton, 4
readDip, 4
setLedModeConstant, 4
setLedModeContinuousPulsed, 4
setLedModePowerStatus, 5
setLedModePulsedSequence, 5

readButton
LEDs.h, 4

readDip
LEDs.h, 4

setLedModeConstant
LEDs.h, 4
setLedModeContinuousPulsed
LEDs.h, 4
setLedModePowerStatus
LEDs.h, 5
setLedModePulsedSequence
LEDs.h, 5



Annex 5

Crypto






Content

1 File Index
1.1 File List

2 File Documentation

2.1 Crypto.h File Reference

2141
21.2

Index

S

Detailed Description

Typedef Documentation

2.1.2.1

Function Documentation

2.1.3.1
2.1.3.2
2.1.3.3
2.1.34

nonceGeneratorFunction

CryptoDecrypt . . . . . ..
CryptoEncrypt . . . . . ..
CryptoSetKey . . . .. ..

CryptoSetNonceGenerator

o o o »~ B OO W W0 W W






Chapter 1

File Index

1.1 File List

Here is a list of all documented files with brief descriptions:

Crypto.h
This file provides functions for an AES 128bit Stream Cipher . . . . . . . . . .. . ... ...



File Index




Chapter 2

File Documentation

2.1 Crypto.h File Reference

This file provides functions for an AES 128bit Stream Cipher.

#include <mv_types.h>

Typedefs

* typedef u8 *(x nonceGeneratorFunction )(u32 state)

Defines an function pointer type.

Functions

« void CryptoSetKey (u8 key128[16])

Set a specific 128 bit key. (optional)
+ void CryptoSetNonceGenerator (nonceGeneratorFunction generator)

Set a specific nonce generator. (optional)

» u32 CryptoEncrypt (const u8 xunencryptedBuffer, const u32 unencryptedBufferSize, const u32 offset, u8
xencryptedBuffer)

AES 128 bit Stream Cipher Encryption (CTR)

» u32 CryptoDecrypt (const u8 sxencryptedBuffer, const u32 encryptedBufferSize, const u32 offset, u8
xdecryptedBuffer)

AES 128 bit Stream Cipher Decryption (CTR)

2.1.1 Detailed Description

This file provides functions for an AES 128bit Stream Cipher.

2.1.2 Typedef Documentation
2.1.2.1 typedef u8:x(x+ nonceGeneratorFunction)(u32 state)

Defines an function pointer type.



4 File Documentation

2.1.3 Function Documentation

2.1.3.1 u32 CryptoDecrypt ( const u8 x encryptedBuffer, const u32 encryptedBufferSize, const u32 offset, u8 x
decryptedBuffer )

AES 128 bit Stream Cipher Decryption (CTR)




2.1 Crypto.h File Reference

Parameters
in encryptedBuffer | A pointer to an encrypted buffer
in encryptedBuffer- | The number of bytes
Size
in offset | Number of bytes to offset from origin (default: 0)
out decryptedBuffer | A pointer to a decrypted buffer
Returns

If decryption is completed, the function returns the number of bytes. Otherwise, a zero value is returned.

2.1.3.2 u32 CryptoEncrypt ( const u8 x unencryptedBuffer, const u32 unencryptedBufferSize, const u32 offset, u8 x
encryptedBuffer )

AES 128 bit Stream Cipher Encryption (CTR)

Parameters
in unencrypted- | A pointer to an unencrypted buffer
Buffer
in unencrypted- | The number of bytes
BufferSize
in offset | Number of bytes to offset from origin (default: 0)
out encryptedBuffer | A pointer to an encrypted buffer
Returns

If encryption is completed, the function returns the number of bytes. Otherwise, a zero value is returned.

2.1.3.3 void CryptoSetKey ( u8 key128[16] )

Set a specific 128 bit key. (optional)

2.1.3.4 void CryptoSetNonceGenerator ( nonceGeneratorFunction generator )

Set a specific nonce generator. (optional)




Index

Crypto.h, 3
CryptoDecrypt, 4
CryptoEncrypt, 5
CryptoSetKey, 5
CryptoSetNonceGenerator, 5
nonceGeneratorFunction, 3
CryptoDecrypt
Crypto.h, 4
CryptoEncrypt
Crypto.h, 5
CryptoSetKey
Crypto.h, 5
CryptoSetNonceGenerator
Crypto.h, 5

nonceGeneratorFunction
Crypto.h, 3



Annex 6

SDCardlO






Contents

1 File Index

1.1

2.1

File List

File Documentation

SDCardIO.h File Reference . . . .

2.1.1

Function Documentation .

21.11

21.1.2

2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1

2.1.
2.1.
2.1.
2.1.
2.1.
2.1.
2.1.
2.1.
2.1.
2.1.
2.1.
2.1.
2.1.

2.1

A
A
A
A
A
A
A
A
A

A

3
4
5
.6
7
.8
.9
.10
A1
12
13
.14
.15
16
A7
.18
.19
.20
.21
.22
.23
.24
.25

SDCardDirCd .
SDCardDirCdUp
SDCardDirClose

SDCardDirCountDirectories . . . . . . . . . . o o o e

SDCardDirCountDirectoriesWithDir . . . . . . . . . . . . .. .. ... .....

SDCardDirCountFiles . . . . . . . . . . . e

SDCardDirCountFilesWithDir . . . . . . . . . . . . . . . . . . ...

SDCardDirExists

SDCardDirGetDirectoryName . . . . . . . . . . ... .

SDCardDirGetFilename . . . . . . . . . ...

SDCardDirGetName . . . . . . . . . . . . .
SDCardDirGetPath . . . . . . . . . . . .
SDCardDirMakeDirectory . . . . . . . ...

SDCardDirMakeDirectoryWithDir . . . . . . . . .. ... ... ...

SDCardDirOpen

SDCardDirOpenWithPath . . . . . . . . . . . .. ... ... ... ... ...,

SDCardDirRemoveDirectory . . . . . . . . . . e

SDCardDirRemoveDirectoryRecursive . . . . . . . . .. ... oL

SDCardDirRemoveDirectoryRecursiveWithDir . . . . . . .. .. . ... .. ..
SDCardDirRemoveDirectoryWithDir . . . . . . . . .. .. .. ... .. .. ...

SDCardEntryStatusDestroy . . . . . . . . . . ...

SDCardExists .
SDCardFileClose
SDCardFileCopy
SDCardFileFlush

N N NN NN NN oo o0 o0 o0 O O O O O o0 oo oo oo oo o1 0o wWwoWw



iv CONTENTS
2.1.1.26 SDCardFileGetPostion . . . . . . . . . . . ... 7
2.1.1.27 SDCardFileGetSize . . . . . . . . . . 7
2.1.1.28 SDCardFileOpen . . . . . . . . . . e 8
2.1.1.29 SDCardFileOpenWithDir . . . . . . . . . . . . e 9
2.1.1.30 SDCardFilePeek . . . . . . . . . . . 9
21.1.31 SDCardFileRead . . . . . . . . . . . 9
2.1.1.32 SDCardFileRemove . . . . . . . . . . 10
2.1.1.33 SDCardFileRemoveWithDir . . . . . . . . . . . . ... . .. ... 10
2.1.1.34 SDCardFileRename . . . . . . . . . . 10
2.1.1.35 SDCardFileSetPosition. . . . . . . . . . . .. 10
2.1.1.36 SDCardFileWrite . . . . . . . . . . e 10
2.1.1.37 SDCardlsMounted . . . . . . . . . . 10
2.1.1.38 SDCardLs . . . . . . . e e 10
2.1.1.39 SDCardLsWithDir . . . . . . . .. . 10
2.1.1.40 SDCardMount . . . . . . . . e 10
2.1.1.41 SDCardRemoveAllFromDirectory . . . . . . . . . . .. ... ... ... 11
2.1.1.42 SDCardRemoveAllFromDirectoryWithDir . . . . . . . ... .. ... ... ... 11
2.1.1.43 SDCardUnmount . . . . . . . . . e 11
Index 12




Chapter 1

File Index

1.1 File List

Here is a list of all documented files with brief descriptions:
SDCardlO.h . . . . e



File Index




Chapter 2

File Documentation

2.1 SDCardlO.h File Reference

#include
#include
#include
#include
#include
#include

Functions

<stdbool.h>
<dirent.h>
<stdio.h>
<time.h>
<sys/syslimits.h>
<mv_types.h>

bool SDCardMount (void)
Try to mount a SD Card. Returns true on success; otherwise returns false.
bool SDCardUnmount (void)
Try to unmount a SD Card. Returns true on success; otherwise returns false.
bool SDCardlsMounted (void)
Returns true if the SD Card is mounted; otherwise returns false.
bool SDCardExists (const char xname)
Returns true if the directory/file called name exists; otherwise returns false.
SDCardDir « SDCardDirOpen (void)
Opens the root directory of the SD Card.
SDCardDir * SDCardDirOpenWithPath (const char xpath)
Returns a valid pointer if successful; otherwise returns NULL.
bool SDCardDirClose (SDCardDir *xdirHandler)
Close the SDCardDir handler.
bool SDCardDirCd (SDCardDir xdirHandler, const char xdirName)
Changes directory to dirName. Return true if the directory exists; otherwise returns false.
bool SDCardDirCdUp (SDCardDir xdirHandler)
Changes directory by moving one directory up. Returns true if the directory exists; otherwise returns false.
u32 SDCardDirCountFiles (const char xpath)
Returns the total number of files in a directory specified by path.
u32 SDCardDirCountFilesWithDir (const SDCardDir xdirHandler)
Returns the total number of files in the current directory.
const char * SDCardDirGetFilename (const SDCardDir *dirHandler, const u32 index)
Return a filename if the index is valid; otherwise returns null.
u32 SDCardDirCountDirectories (const char xpath)



File Documentation

Returns the total number of folders in a directory specified by path.
u32 SDCardDirCountDirectoriesWithDir (const SDCardDir *dirHandler)

Returns the total number of folders in the directory.
const char x SDCardDirGetDirectoryName (const SDCardDir xdirHandler, const u32 index)
bool SDCardDirMakeDirectory (const char xpath)

Create a sub-directory. Returns true on success; otherwise returns false.

bool SDCardDirMakeDirectoryWithDir (const SDCardDir xdirHandler, const char xdirName)
Create a sub-directory called dirName. Returns true on success; otherwise returns false.

bool SDCardDirRemoveDirectory (const char xpath)
Removes the directory specified by path. The directory must be empty to succeed. Return true if successful; other-
wise returns false.

bool SDCardDirRemoveDirectoryWithDir (const SDCardDir xdirHandler, const char xdirName)
Removes the directory specified by dirName. The directory must be empty to succeed. Return true if successful;
otherwise returns false.

bool SDCardDirRemoveDirectoryRecursive (const char xpath)

Removes the directory specified by path. Return true if successful; otherwise returns false.

bool SDCardDirRemoveDirectoryRecursiveWithDir (SDCardDir sdirHandler, const char xdirName)
Removes the directory specified by dirName. Return true if successful; otherwise returns false.

const char x SDCardDirGetName (const SDCardDir xdirHandler)

Returns the name of the directory.
const char * SDCardDirGetPath (const SDCardDir *dirHandler)

Returns the path. The returned path is absolute.
bool SDCardDirExists (const SDCardDir xdirHandler, const char xname)

Returns true if the directory/file called name exists; otherwise returns false.
bool SDCardRemoveAllFromDirectory (const char xpath)

Delete all Elements inside the directory.
bool SDCardRemoveAllFromDirectoryWithDir (SDCardDir xdirHandler)

Delete all Elements inside the directory.
SDCardEntryStatus * SDCardLs (const char xpath, int xsize)
Returns an array of SDCardEntryStatus objects for all the files and directories in the directory. Returns a NULL if the
directory is unreadable, does not exist or is empty.
SDCardEntryStatus * SDCardLsWithDir (const SDCardDir xdirHandler, int xsize)
Returns an array of SDCardEntryStatus objects for all the files and directories in the directory. Returns a NULL if the
directory is unreadable, does not exist or is empty.
void SDCardEntryStatusDestroy (SDCardEntryStatus *xentries)
Frees an array of SDCardEntryStatus objects.
SDCardFile * SDCardFileOpen (const char *filename, const char xmode, bool enableEncryption)
Returns a valid pointer if successful; otherwise returns NULL.
SDCardFile * SDCardFileOpenWithDir (const SDCardDir «dirHandler, const char xfilename, const char
xmode, bool enableEncryption)
Returns a valid pointer if successful; otherwise returns NULL.
bool SDCardFileClose (SDCardFile xxfileHandler)
Close the SDCardFile handler.
bool SDCardFileRemove (const char xfilename)
Removes the file specified by the ‘filename’(absolute path) given. Returns true if successful; otherwise return false.
bool SDCardFileRemoveWithDir (const SDCardDir xdirHandler, const char *filename)
Removes the file specified by the ‘filename’ given. Returns true if successful; otherwise return false.
bool SDCardFileRename (const char xcurrentFilename, const char xnewFilename)
Rename the file ‘currentFilename’ to ‘newFilename’. Return true if successful; otherwise returns false. If a file with
the name ‘newFilename’ already exists, SDCardFileRename() returns false.
bool SDCardFileCopy (const char xsourceFilename, const char xdestFilename)




2.1 SDCardIO.h File Reference

Copy the file 'sourceFilename’ to destFilename’. Return true if successful; otherwise returns false. If a file with the

name ‘destFilename’ already exists, SDCardFileCopy() returns false.
+ u32 SDCardFileGetSize (SDCardFile *fileHandler)
Returns the size of the file.
» u32 SDCardFileWrite (SDCardFile xfileHandler, const u8 xwriteBuffer, const u32 writeBufferSize)

Writes at most ‘writeBufferSize’ bytes of data from 'writeBuffer’ to the file. Returns the number of bytes that were

actually written, or 0 if an error occurred.
» u32 SDCardFileRead (SDCardFile «fileHandler, u8 xreadBuffer, const u32 readBufferSize)

Reads at most readBufferSize’ bytes from the file into readBuffer’, and returns the number of bytes read. If an error

occurs, such as when attempting to read from a file opened in WriteOnly mode, this function returns 0.
» u32 SDCardFilePeek (SDCardFile xfileHandler, u8 xreadBuffer, const u32 readBufferSize)

Reads at most readBufferSize’ bytes from the file into readBuffer’, without side effects (i.e., if you call SDCardFile-
Read() after SDCardFilePeek(), you will get the same data). Returns the number of bytes read. If an error occurs,

such as when attempting to peek a file opened in WriteOnly mode, this function returns 0.
» bool SDCardFileSetPosition (SDCardFile *fileHandler, const u32 pos)

Sets the current position from the fileHandler to ‘pos’. Returns true on success, or false if an error occurred.
+ u32 SDCardFileGetPostion (SDCardFile xfileHandler)

Returns the current position from the fileHandler.
* bool SDCardFileFlush (SDCardFile *fileHandler)

Flushes any buffered data to the file. Returns true if successful; otherwise returns false.
2.1.1  Function Documentation
2.1.1.1  bool SDCardDirCd ( SDCardDir * dirHandler, const char x dirName )

Changes directory to dirName. Return true if the directory exists; otherwise returns false.

2.1.1.2 bool SDCardDirCdUp ( SDCardDir * dirHandler )

Changes directory by moving one directory up. Returns true if the directory exists; otherwise returns false.

2.1.1.3 bool SDCardDirClose ( SDCardDir  dirHandler )

Close the SDCardDir handler.

Parameters

out dirHandler | pointer to a SDCardDir object

Returns

If the SDCardDir-handler is successfully closed, the function returns true. Otherwise, false is returned.

2.1.1.4 u32 SDCardDirCountDirectories ( const char x path )

Returns the total number of folders in a directory specified by path.

2.1.1.5 u32 SDCardDirCountDirectoriesWithDir ( const SDCardDir  dirHandler )

Returns the total number of folders in the directory.




File Documentation

2.1.1.6 u32 SDCardDirCountFiles ( const char x path )

Returns the total number of files in a directory specified by path.

2.1.1.7 u32 SDCardDirCountFilesWithDir ( const SDCardDir * dirHandler )

Returns the total number of files in the current directory.

2.1.1.8 bool SDCardDirExists ( const SDCardDir * dirHandler, const char x name )

Returns true if the directory/file called name exists; otherwise returns false.

2.1.1.9 const charx SDCardDirGetDirectoryName ( const SDCardDir * dirHandler, const u32 index )

Return a directory name if the index is valid; otherwise returns null.

2.1.1.10 const charx SDCardDirGetFilename ( const SDCardDir « dirHandler, const u32 index )

Return a filename if the index is valid; otherwise returns null.

2.1.1.11  const charx SDCardDirGetName ( const SDCardDir * dirHandler )

Returns the name of the directory.

2.1.1.12 const char SDCardDirGetPath ( const SDCardDir x dirHandler )

Returns the path. The returned path is absolute.

2.1.1.13 bool SDCardDirMakeDirectory ( const char x path )

Create a sub-directory. Returns true on success; otherwise returns false.

2.1.1.14 bool SDCardDirMakeDirectoryWithDir ( const SDCardDir  dirHandler, const char x dirName )

Create a sub-directory called dirName. Returns true on success; otherwise returns false.

2.1.1.15 SDCardDir+ SDCardDirOpen ( void )

Opens the root directory of the SD Card.

2.1.1.16  SDCardDir+ SDCardDirOpenWithPath ( const char * path )

Returns a valid pointer if successful; otherwise returns NULL.

2.1.1.17 bool SDCardDirRemoveDirectory ( const char x path )

Removes the directory specified by path. The directory must be empty to succeed. Return true if successful;

otherwise returns false.




2.1 SDCardlO.h File Reference 7

2.1.1.18 bool SDCardDirRemoveDirectoryRecursive ( const char  path )

Removes the directory specified by path. Return true if successful; otherwise returns false.

2.1.1.19 bool SDCardDirRemoveDirectoryRecursiveWithDir ( SDCardDir  dirHandler, const char * dirName )

Removes the directory specified by dirName. Return true if successful; otherwise returns false.

2.1.1.20 bool SDCardDirRemoveDirectoryWithDir ( const SDCardDir  dirHandler, const char x dirName )

Removes the directory specified by dirName. The directory must be empty to succeed. Return true if successful;
otherwise returns false.

2.1.1.21 void SDCardEntryStatusDestroy ( SDCardEntryStatus x entries )

Frees an array of SDCardEntryStatus objects.

2.1.1.22 bool SDCardExists ( const char x name )

Returns true if the directory/file called name exists; otherwise returns false.

2.1.1.23 bool SDCardFileClose ( SDCardFile x:x fileHandler )

Close the SDCardFile handler.

Parameters

out fileHandler | pointer to a SDCardFile object

Returns

If the SDCardFile-handler is successfully closed, the function returns true. Otherwise, false is returned.

2.1.1.24 bool SDCardFileCopy ( const char « sourceFilename, const char * destFilename )

Copy the file 'sourceFilename’ to ‘destFilename’. Return true if successful; otherwise returns false. If a file with the
name 'destFilename’ already exists, SDCardFileCopy() returns false.

2.1.1.25 bool SDCardFileFlush ( SDCardFile  fileHandler )

Flushes any buffered data to the file. Returns true if successful; otherwise returns false.

2.1.1.26 u32 SDCardFileGetPostion ( SDCardFile  fileHandler )

Returns the current position from the fileHandler.

2.1.1.27 u32 SDCardFileGetSize ( SDCardFile  fileHandler )

Returns the size of the file.




8 File Documentation

2.1.1.28 SDCardFile:x SDCardFileOpen ( const char  filename, const char = mode, bool enableEncryption )

Returns a valid pointer if successful; otherwise returns NULL.




2.1 SDCardIO.h File Reference 9

Parameters

in filename | represent the file with the given name (absolute path)

in mode | supports read ("r") and write ("w") access. For more details
See Also

fopen
Parameters

in enable- | encrypt and decrypt automatically if true

Encryption

Returns

If the file is successfully opened, the function returns a pointer to a SDCardFile object. Otherwise, a null
pointer is returned.

2.1.1.29 SDCardFilex SDCardFileOpenWithDir ( const SDCardDir * dirHandler, const char x filename, const char x mode, bool
enableEncryption )

Returns a valid pointer if successful; otherwise returns NULL.

Parameters

in dirHandler | holds the current path

in filename | represent the file with the given name

in mode | supports read ("r") and write ("w") access. For more details
See Also

fopen
Parameters

in enable- | encrypt and decrypt automatically if true

Encryption

Returns

If the file is successfully opened, the function returns a pointer to a SDCardFile object. Otherwise, a null
pointer is returned.

2.1.1.30 u32 SDCardFilePeek ( SDCardFile  fileHandler, u8 * readBuffer, const u32 readBufferSize )
Reads at most readBufferSize’ bytes from the file into 'readBuffer’, without side effects (i.e., if you call SDCardFile-

Read() after SDCardFilePeek(), you will get the same data). Returns the number of bytes read. If an error occurs,
such as when attempting to peek a file opened in WriteOnly mode, this function returns 0.

2.1.1.31 u32 SDCardFileRead ( SDCardFile « fileHandler, u8 * readBuffer, const u32 readBufferSize )

Reads at most 'readBufferSize’ bytes from the file into readBuffer’, and returns the number of bytes read. If an error
occurs, such as when attempting to read from a file opened in WriteOnly mode, this function returns 0.



http://www.cplusplus.com/reference/cstdio/fopen/
http://www.cplusplus.com/reference/cstdio/fopen/

10 File Documentation

Parameters
in fileHandler | pointer to a SDCardFile object
out readBuffer | a data array
in readBufferSize | number of bytes

2.1.1.32 bool SDCardFileRemove ( const char x filename )

Removes the file specified by the ‘filename’(absolute path) given. Returns true if successful; otherwise return false.

2.1.1.33 bool SDCardFileRemoveWithDir ( const SDCardDir * dirHandler, const char x filename )

Removes the file specified by the ‘filename’ given. Returns true if successful; otherwise return false.

2.1.1.34 bool SDCardFileRename ( const char x currentFilename, const char x newFilename )

Rename the file 'currentFilename’ to 'newFilename’. Return true if successful; otherwise returns false. If a file with
the name 'newFilename’ already exists, SDCardFileRename() returns false.

2.1.1.35 bool SDCardFileSetPosition ( SDCardFile x fileHandler, const u32 pos )

Sets the current position from the fileHandler to 'pos’. Returns true on success, or false if an error occurred.

2.1.1.36  u32 SDCardFileWrite ( SDCardFile x fileHandler, const u8 « writeBuffer, const u32 writeBufferSize )

Writes at most 'writeBufferSize’ bytes of data from 'writeBuffer’ to the file. Returns the number of bytes that were
actually written, or 0 if an error occurred.

Parameters
in fileHandler | pointer to a SDCardFile object
in writeBuffer | a data array
in writeBufferSize | number of bytes

2.1.1.37 bool SDCardIsMounted ( void )

Returns true if the SD Card is mounted; otherwise returns false.

2.1.1.38 SDCardEntryStatus=: SDCardLs ( const char * path, int x size )

Returns an array of SDCardEntryStatus objects for all the files and directories in the directory. Returns a NULL if
the directory is unreadable, does not exist or is empty.

2.1.1.39 SDCardEntryStatus= SDCardLsWithDir ( const SDCardDir « dirHandler, int x size )

Returns an array of SDCardEntryStatus objects for all the files and directories in the directory. Returns a NULL if
the directory is unreadable, does not exist or is empty.

2.1.1.40 bool SDCardMount ( void )

Try to mount a SD Card. Returns true on success; otherwise returns false.




2.1 SDCardIO.h File Reference

11

2.1.1.41 bool SDCardRemoveAllFromDirectory ( const char  path )

Delete all Elements inside the directory.

2.1.1.42 bool SDCardRemoveAllFromDirectoryWithDir ( SDCardDir * dirHandler )

Delete all Elements inside the directory.

2.1.1.43 bool SDCardUnmount ( void )

Try to unmount a SD Card. Returns true on success; otherwise returns false.




Index

SDCardDirCd

SDCardIO.h, 5
SDCardDirCdUp

SDCardIO.h, 5
SDCardDirClose

SDCardlO.h, 5
SDCardDirCountDirectories

SDCardIO.h, 5
SDCardDirCountDirectoriesWithDir

SDCardlO.h, 5
SDCardDirCountFiles

SDCardIO.h, 5
SDCardDirCountFilesWithDir

SDCardIO.h, 6
SDCardDirExists

SDCardIO.h, 6
SDCardDirGetDirectoryName

SDCardIO.h, 6
SDCardDirGetFilename

SDCardIO.h, 6
SDCardDirGetName

SDCardIO.h, 6
SDCardDirGetPath

SDCardIO.h, 6
SDCardDirMakeDirectory

SDCardIO.h, 6
SDCardDirMakeDirectoryWithDir

SDCardlO.h, 6
SDCardDirOpen

SDCardIO.h, 6
SDCardDirOpenWithPath

SDCardIO.h, 6
SDCardDirRemoveDirectory

SDCardIO.h, 6
SDCardDirRemoveDirectoryRecursive

SDCardIO.h, 6
SDCardDirRemoveDirectoryRecursiveWithDir

SDCardIO.h, 7
SDCardDirRemoveDirectoryWithDir

SDCardIO.h, 7
SDCardEntryStatusDestroy

SDCardIO.h, 7
SDCardExists

SDCardIO.h, 7
SDCardFileClose

SDCardIO.h, 7
SDCardFileCopy

SDCardIO.h, 7
SDCardFileFlush

SDCardIO.h, 7
SDCardFileGetPostion
SDCardIO.h, 7
SDCardFileGetSize
SDCardlO.h, 7
SDCardFileOpen
SDCardIO.h, 7
SDCardFileOpenWithDir
SDCardIO.h, 9
SDCardFilePeek
SDCardIO.h, 9
SDCardFileRead
SDCardIO.h, 9
SDCardFileRemove
SDCardlO.h, 10
SDCardFileRemoveWithDir
SDCardIO.h, 10
SDCardFileRename
SDCardlO.h, 10
SDCardFileSetPosition
SDCardlO.h, 10
SDCardFileWrite
SDCardlO.h, 10
SDCardIO.h, 3
SDCardDirCd, 5
SDCardDirCdUp, 5
SDCardDirClose, 5
SDCardDirCountDirectories, 5
SDCardDirCountDirectoriesWithDir, 5
SDCardDirCountFiles, 5
SDCardDirCountFilesWithDir, 6
SDCardDirExists, 6
SDCardDirGetDirectoryName, 6
SDCardDirGetFilename, 6
SDCardDirGetName, 6
SDCardDirGetPath, 6
SDCardDirMakeDirectory, 6
SDCardDirMakeDirectoryWithDir, 6
SDCardDirOpen, 6
SDCardDirOpenWithPath, 6
SDCardDirRemoveDirectory, 6
SDCardDirRemoveDirectoryRecursive, 6
SDCardDirRemoveDirectoryRecursiveWithDir, 7
SDCardDirRemoveDirectoryWithDir, 7
SDCardEntryStatusDestroy, 7
SDCardExists, 7
SDCardFileClose, 7
SDCardFileCopy, 7
SDCardFileFlush, 7



INDEX

13

SDCardFileGetPostion, 7
SDCardFileGetSize, 7
SDCardFileOpen, 7
SDCardFileOpenWithDir, 9
SDCardFilePeek, 9
SDCardFileRead, 9
SDCardFileRemove, 10
SDCardFileRemoveWithDir, 10
SDCardFileRename, 10
SDCardFileSetPosition, 10
SDCardFileWrite, 10
SDCardIsMounted, 10
SDCardLs, 10
SDCardLsWithDir, 10
SDCardMount, 10
SDCardRemoveAllFromDirectory, 10
SDCardRemoveAllFromDirectoryWithDir, 11
SDCardUnmount, 11
SDCardlsMounted
SDCardlO.h, 10
SDCardLs
SDCardIO.h, 10
SDCardLsWithDir
SDCardIO.h, 10
SDCardMount
SDCardlO.h, 10
SDCardRemoveAllFromDirectory
SDCardIO.h, 10
SDCardRemoveAllFromDirectoryWithDir
SDCardIO.h, 11
SDCardUnmount
SDCardIO.h, 11




Annex 7

ELF Loader






Contents

1 File Index
1.1 FileList . . . . o e e e

2 File Documentation

2.1 ElfLoader.h File Reference . . . . . . . . . . . . . . . e
2.1.1 Detailed Description . . . . . . . .
2.1.2 Function Documentation . . . . . . . . . . ...

2.1.2.1  LoadElf(const char *elfBinaryName)

Index

w W W w W






Chapter 1

File Index

1.1 File List

Here is a list of all documented files with brief descriptions:

ElfLoader.h
Provides functionality to load an ELF fileintomemory . . . . . .. .. .. ... ... .....



File Index




Chapter 2

File Documentation

2.1 ElfLoader.h File Reference

Provides functionality to load an ELF file into memory.

#include <mv_types.h>

Functions

+ u32 LoadElf (const char xelfBinaryName)
Load an elf binary from the flash into the memory.
2.1.1 Detailed Description

Provides functionality to load an ELF file into memory.

2.1.2 Function Documentation
2.1.21 u32 LoadElf ( const char x elfBinaryName )

Load an elf binary from the flash into the memory.

Parameters

in elfBinaryName | holds the name of the binary

Returns

If loading is completed, the function returns the entry point address. Otherwise, a zero value is returned.



File Documentation




Index

ElfLoader.h, 3
LoadElf, 3

LoadElf
ElfLoader.h, 3



Annex 8

FlashlO






Contents

1 Data Structure Index 1
1.1 DataStructures . . . . . . . e 1

2 File Index 3
21 FileList . . . . . e 3

3 Data Structure Documentation 5
3.1 FlashFile Struct Reference . . . . . . . . . . . 5
3.1.1  Detailed Description . . . . . . . . e 5

4 File Documentation 7
41 FlashlO.h File Reference . . . . . . . . . . e 7
4.1.1 Detailed Description . . . . . . . . 8

4.1.2 Enumeration Type Documentation . . . . . . . ... .. ... ... o 8

4.1.21 FlashFileError . . . . . . . 8

4122 FlashFileMode . . . . . . . . . . . 8

4.1.3 Function Documentation . . . . . . . ... 8

4.1.3.1  FlashFileAvailableMemory . . . . . . . . . . .. . 8

41.3.2 FlashFileClose . . . . . . . . . . e 8

41.3.3 FlashFileExists . . . . . . . . . . . 9

4.1.3.4 FlashFileGetAvailableSpace . . . . . . . . . . . . ... .. oL 9

4.1.3.5 FlashFileGetDevicelD . . . . . . . . . . 9

41.3.6 FlashFileGetMaxSize . . . . . . . . . . . . .. . 9

4.1.3.7 FlashFileGetPosition . . . . . . . . . . . ... 9

4.1.3.8 FlashFileGetSize . . . . . . . . . . . . 9

4.1.3.9 FlashFileOpen . . . . . . . . . 9

41310 FlashFilePeek . . . . . . . . . . . . 9

41311 FlashFileRead . . . . . . . . . . . . 9

4.1.3.12 FlashFileRemove . . . . . . . . . . . . 10

4.1.3.13 FlashFileRename . . . . . . . . . . . . . 10

4.1.3.14 FlashFileSetPosition . . . . . . . . . . . . ... 10

4.1.3.15 FlashFileWrite . . . . . . . . . . e 10



iv CONTENTS

Index 11




Chapter 1

Data Structure Index

1.1 Data Structures

Here are the data structures with brief descriptions:
FlashFile . . . . . . . e e e



Data Structure Index




Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

FlashlO.h
This file provides functions for read/write files from/to the EEPROM . . . . . . .. .. ... ..



File Index




Chapter 3

Data Structure Documentation

3.1 FlashFile Struct Reference

#include <FlashIO.h>

3.1.1 Detailed Description

Object containing information to control a stream. FlashFile objects are created by a call of FlashFileOpen, which
returns a pointer to one of these objects.

The documentation for this struct was generated from the following file:

+ FlashlO.h



Data Structure Documentation




Chapter 4

File Documentation

4.1 FlashlO.h File Reference

This file provides functions for read/write files from/to the EEPROM.

#include <stdbool.h>
#include <mv_types.h>

Data Structures

« struct FlashFile

Enumerations

* enum FlashFileMode
« enum FlashFileError

Functions

FlashFile * FlashFileOpen (const char xfilename, const FlashFileMode mode)

Returns a valid pointer if successful; otherwise returns NULL.
bool FlashFileClose (FlashFile xxfileHandler)

Close the FlashFile handler.

u32 FlashFileWrite (FlashFile xfileHandler, const u8 xwriteBuffer, const u32 writeBufferSize)
Writes at most ‘writeBufferSize’ bytes of data from 'writeBuffer’ to the file. Returns the number of bytes that were
actually written, or 0 if an error occurred.

u32 FlashFileRead (FlashFile xfileHandler, u8 xreadBuffer, const u32 readBufferSize)
Reads at most readBufferSize’ bytes from the file into readBuffer’, and returns the number of bytes read. If an error
occurs, such as when attempting to read from a file opened in WriteOnly mode, this function returns 0.

u32 FlashFilePeek (const FlashFile xfileHandler, u8 xreadBuffer, const u32 readBufferSize)
Reads at most readBufferSize’ bytes from the file into readBuffer’, without side effects (i.e., if you call FlashFileRead()

after FlashFilePeek(), you will get the same data). Returns the number of bytes read. If an error occurs, such as when
attempting to peek a file opened in WriteOnly mode, this function returns 0.

bool FlashFileSetPosition (FlashFile xfileHandler, const u32 pos)

Sets the current position from the fileHandler to ‘pos’. Returns true on success, or false if an error occurred. Note:
This function will only change the position if the fileHandler is in ReadOnly mode.

u32 FlashFileGetPosition (const FlashFile xfileHandler)

Returns the current position from the fileHandler.



File Documentation

u32 FlashFileGetAvailableSpace (FlashFile xfileHandler)

Returns the available space for the fileHandler in bytes.
bool FlashFileRemove (const char xfilename)

Removes the file specified by the filename’ given. Returns true if successful; otherwise return false.
bool FlashFileRename (const char xoldFilename, const char xnewFilename)

Rename the file ‘oldFilename’ to ‘newFilename’. Return true if successful; otherwise returns false. If a file with the
name ‘newFilename’ already exists, FlashFileRename() returns false.

u32 FlashFileGetSize (const char xfilename)

Returns the size of the file.
u32 FlashFileGetMaxSize (const char xfilename)

Returns the maximum size of the file If the file is not existing or the maximum size is not set yet, this function returns
0.

bool FlashFileExists (const char *filename)

Returns true if the file specified by ‘filename’ exists; otherwise returns false.
u32 FlashFileAvailableMemory (void)

Returns the available space of the flash in bytes.
const u8 x FlashFileGetDevicelD (void)

Returns the device id.

Detailed Description

This file provides functions for read/write files from/to the EEPROM.

412 Enumeration Type Documentation

41.21 enum FlashFileError

This enum describes the errors that may be returned by the errorFlashFile() function.

4.1.2.2 enum FlashFileMode

This enum is used with FlashFileOpen() to describe the mode in which a FlashFile is opened.

4.1.3 Function Documentation

4.1.3.1 u32 FlashFileAvailableMemory ( void )

Returns the available space of the flash in bytes.

4.1.3.2 Dbool FlashFileClose ( FlashFile xx fileHandler )

Close the FlashFile handler.
Parameters

out fileHandler | pointer to a FlashFile object

Returns

If the FlashFile-handler is successfully closed, the function returns true. Otherwise, false is returned.




4.1 FlashlO.h File Reference 9

4.1.3.3 bool FlashFileExists ( const char x filename )

Returns true if the file specified by ‘filename’ exists; otherwise returns false.

41.3.4 u32 FlashFileGetAvailableSpace ( FlashFile x fileHandler )

Returns the available space for the fileHandler in bytes.

4.1.3.5 const u8x FlashFileGetDevicelD ( void )

Returns the device id.

4.1.3.6 u32 FlashFileGetMaxSize ( const char x filename )

Returns the maximum size of the file If the file is not existing or the maximum size is not set yet, this function returns
0.

4.1.3.7 u32 FlashFileGetPosition ( const FlashFile x fileHandler )

Returns the current position from the fileHandler.

4.1.3.8 u32 FlashFileGetSize ( const char x filename )

Returns the size of the file.

41.3.9 FlashFilex FlashFileOpen ( const char « filename, const FlashFileMode mode )

Returns a valid pointer if successful; otherwise returns NULL.

Parameters

in filename | represent the file with the given name

in mode | the mode must be ReadOnly, WriteOnly or Append
Returns

If the file is successfully opened, the function returns a pointer to a FlashFile object. Otherwise, a null pointer
is returned.

4.1.3.10 u32 FlashFilePeek ( const FlashFile x fileHandler, u8 * readBuffer, const u32 readBufferSize )
Reads at most 'readBufferSize’ bytes from the file into 'readBuffer’, without side effects (i.e., if you call FlashFile-

Read() after FlashFilePeek(), you will get the same data). Returns the number of bytes read. If an error occurs,
such as when attempting to peek a file opened in WriteOnly mode, this function returns 0.

4.1.3.11 u32 FlashFileRead ( FlashFile x fileHandler, u8 x readBuffer, const u32 readBufferSize )

Reads at most readBufferSize’ bytes from the file into readBuffer’, and returns the number of bytes read. If an error
occurs, such as when attempting to read from a file opened in WriteOnly mode, this function returns 0.




10 File Documentation

Parameters
in fileHandler | pointer to a FlashFile object
out readBuffer | a data array
in readBufferSize | number of bytes

4.1.3.12 bool FlashFileRemove ( const char x filename )

Removes the file specified by the ‘flename’ given. Returns true if successful; otherwise return false.

4.1.3.13 bool FlashFileRename ( const char x oldFilename, const char = newFilename )

Rename the file 'oldFilename’ to 'newFilename’. Return true if successful; otherwise returns false. If a file with the
name 'newFilename’ already exists, FlashFileRename() returns false.

4.1.3.14 bool FlashFileSetPosition ( FlashFile x fileHandler, const u32 pos )

Sets the current position from the fileHandler to ’pos’. Returns true on success, or false if an error occurred. Note:
This function will only change the position if the fileHandler is in ReadOnly mode.

4.1.3.15 u32 FlashFileWrite ( FlashFile x fileHandler, const u8 x writeBuffer, const u32 writeBufferSize )

Writes at most 'writeBufferSize’ bytes of data from 'writeBuffer’ to the file. Returns the number of bytes that were
actually written, or 0 if an error occurred.

Parameters
in fileHandler | pointer to a FlashFile object
in writeBuffer | a data array
in writeBufferSize | number of bytes




Index

FlashFile, 5 FlashFileRemove, 10
FlashFileAvailableMemory FlashFileRename, 10
FlashlO.h, 8 FlashFileSetPosition, 10
FlashFileClose FlashFileWrite, 10
FlashlO.h, 8
FlashFileError
FlashlO.h, 8
FlashFileExists
FlashlO.h, 8
FlashFileGetAvailableSpace
FlashlO.h, 9
FlashFileGetDevicelD
FlashlO.h, 9
FlashFileGetMaxSize
FlashlO.h, 9
FlashFileGetPosition
FlashlO.h, 9
FlashFileGetSize
FlashlO.h, 9
FlashFileMode
FlashlO.h, 8
FlashFileOpen
FlashlO.h, 9
FlashFilePeek
FlashlO.h, 9
FlashFileRead
FlashlO.h, 9
FlashFileRemove
FlashlO.h, 10
FlashFileRename
FlashlO.h, 10
FlashFileSetPosition
FlashlO.h, 10
FlashFileWrite
FlashlO.h, 10
FlashlO.h, 7
FlashFileAvailableMemory, 8
FlashFileClose, 8
FlashFileError, 8
FlashFileExists, 8
FlashFileGetAvailableSpace, 9
FlashFileGetDevicelD, 9
FlashFileGetMaxSize, 9
FlashFileGetPosition, 9
FlashFileGetSize, 9
FlashFileMode, 8
FlashFileOpen, 9
FlashFilePeek, 9
FlashFileRead, 9



Annex 9

Audio






Contents

1 File Index

1.1

File List

2 File Documentation

21

Index

/Developer/projects/EoT/WorkPackage_3/myriad/apps/audio/leon/Audio.h File Reference . . . . .

2.1.1

Function Documentation . . . . . . . . . . . .

2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1

.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
.1.10
A1
112
.1.13
1.14
.1.15
.1.16
117

AudioGetDuration . . . . . . . ..

AudioGetPosition . . . . . . . ...

AudioGetVolume . . . . . . . .
AudiolsInPlaybackMode . . . . . . . . ..o
AudiolsInRecordMode . . . . . . ...
AudiolsMuted . . . . ..

AudiolsPaused . . . . . . . ...

AudiolsSeekable . . . . . . . ...

AudiolsStopped . . . . ..

AudioPause

AudioPlay

AudioRecord . . . . . . . .. e e

AudioResume . . . . . . . e

AudioSetMute . . . . . .. e

AudioSetPosition . . . . . ... e

AudioSetVolume . . . . . . . e

AudioStop

g oo o0 o0 o0 o0 a0 g A b b B D D DB D D pHp OO






Chapter 1

File Index

1.1 File List

Here is a list of all documented files with brief descriptions:

/Developer/projects/EoT/WorkPackage_3/myriad/apps/audio/leon/Audio.h . . . . . ... ... ... ..



File Index




Chapter 2

File Documentation

2.1 /Developer/projects/EoT/WorkPackage_3/myriad/apps/audio/leon/Audio.h File Refer-
ence

#include <stdbool.h>
#include <mv_types.h>

Functions

* u32 AudioGetPosition (void)
Returns the current position in milliseconds.
+ void AudioSetPosition (u32 position)
Change the playback position, if the audio source is seekable.
+ u32 AudioGetDuration (void)
Returns the total playback time in milliseconds.
* bool AudiolsMuted (void)
Returns true if the playback is muted; otherwise false.
+ void AudioSetMute (bool enable)
Enable or disable the mute mode.
* bool AudiolsSeekable (void)
Returns true if the playback is seekable; false otherwise.
 u8 AudioGetVolume (void)
Returns the playback volume.
+ void AudioSetVolume (int8_t volume)
Set the playback volume.
+ bool AudioPlay (const char xfilepath)
Start or resume playing the current source.
« void AudioPause (void)
Pause playing the current source.
* void AudioStop (void)
Stop playing, and reset the play position to the beginning.
+ void AudioResume (void)
Resume playing/recording audio.
* bool AudioRecord (const char xfilepath)

Start or resume recording.
* bool AudiolsIinPlaybackMode (void)



File Documentation

Returns true if playback is active; otherwise false.
* bool AudiolsPaused (void)

Returns true if playback/record is paused; otherwise false.

* bool AudiolsStopped (void)

Returns true if playback/record is stopped; otherwise false.

* bool AudiolsinRecordMode (void)

Returns true if record is active; otherwise false.

2.1.1 Function Documentation
2.1.1.1  u32 AudioGetDuration ( void )

Returns the total playback time in milliseconds.

2.1.1.2  u32 AudioGetPosition ( void )

Returns the current position in milliseconds.

To change this position, use the AudioSetPosition(u32) method.

2.1.1.3 u8 AudioGetVolume ( void )

Returns the playback volume.

2.1.1.4 bool AudiolsinPlaybackMode ( void )

Returns true if playback is active; otherwise false.

2.1.1.5 bool AudiolsinRecordMode ( void )

Returns true if record is active; otherwise false.

2.1.1.6  bool AudiolsMuted ( void )

Returns true if the playback is muted; otherwise false.

2.1.1.7 bool AudiolsPaused ( void )

Returns true if playback/record is paused; otherwise false.

2.1.1.8 bool AudiolsSeekable ( void )

Returns true if the playback is seekable; false otherwise.

2.1.1.9 bool AudiolsStopped ( void )

Returns true if playback/record is stopped; otherwise false.




2.1 /Developer/projects/EoT/WorkPackage 3/myriad/apps/audio/leon/Audio.h File Reference

2.1.1.10 void AudioPause ( void )

Pause playing the current source.

2.1.1.11  bool AudioPlay ( const char x filepath )

Start or resume playing the current source.

Parameters

] filepath \ path to the audio source.

2.1.1.12 bool AudioRecord ( const char x filepath )

Start or resume recording.

Parameters

] filepath \ save the audio data to file destination.

2.1.1.13 void AudioResume ( void )

Resume playing/recording audio.

2.1.1.14 void AudioSetMute ( bool enable )

Enable or disable the mute mode.

2.1.1.15 void AudioSetPosition ( u32 position )

Change the playback position, if the audio source is seekable.

Parameters

position \ in milliseconds.

2.1.1.16 void AudioSetVolume ( int8_t volume )

Set the playback volume.

Parameters

] volume \ the range is from O(silent) to 100(maximum), values outside this range will be clamped.

2.1.1.17 void AudioStop ( void )

Stop playing, and reset the play position to the beginning.




Index

/Developer/projects/EoT/WorkPackage_3/myriad/apps/audio/leoiidio.h, 5

Audio.h, 3 AudioSetVolume
Audio.h, 5
Audio.h AudioStop
AudioGetDuration, 4 Audio.h, 5

AudioGetPosition, 4
AudioGetVolume, 4
AudiolsInPlaybackMode, 4
AudiolsInRecordMode, 4
AudiolsMuted, 4
AudiolsPaused, 4
AudiolsSeekable, 4
AudiolsStopped, 4
AudioPause, 4
AudioPlay, 5
AudioRecord, 5
AudioResume, 5
AudioSetMute, 5
AudioSetPosition, 5
AudioSetVolume, 5
AudioStop, 5
AudioGetDuration
Audio.h, 4
AudioGetPosition
Audio.h, 4
AudioGetVolume
Audio.h, 4
AudiolsInPlaybackMode
Audio.h, 4
AudiolsinRecordMode
Audio.h, 4
AudiolsMuted
Audio.h, 4
AudiolsPaused
Audio.h, 4
AudiolsSeekable
Audio.h, 4
AudiolsStopped
Audio.h, 4
AudioPause
Audio.h, 4
AudioPlay
Audio.h, 5
AudioRecord
Audio.h, 5
AudioResume
Audio.h, 5
AudioSetMute
Audio.h, 5
AudioSetPosition



Annex 10
Histogram Matching






Contents

1 Data Structure Index 1
1.1 DataStructures . . . . . . . e e 1
2 File Index 3
2.1 FileList . . . . . 3
3 Data Structure Documentation 5
3.1 RectStruct Reference . . . . . . . . L 5
3.1.1  Detailed Description . . . . . . .. 5
4 File Documentation 7
4.1 ColorHistogram.h File Reference . . . . . . . . . . . . 7
4.1.1 Detailed Description . . . . . . .. 7
4.1.2 Function Documentation . . . . . . . . . 7
4.1.2.1 computeHistogram(frameBuffer ximage, int xhistogramBuffer, u8 bins[]) . . . . . 7

41.2.2 computeHistogramInRoi(frameBuffer ximage, int xhistogramBuffer, u8 bins][],
Rectroi) . . . . . . 8
4.2 HistogramMatching.h File Reference . . . . . . . . . . . 8
421 Detailed Description . . . . . . .. 8
4.2.2 Function Documentation . . . . . . . ... 8
4221 earthMoversDistance(u16 bins, int histogramOne[], int histogramTwo[]) . . . . . 8
4.2.2.2 hellingerDistance(u16 bins, int histogramOne][], int histogramTwo[]) . . . . . .. 8
4.2.2.3 histogramintersectionDistance(u16 bins, int histogramOne[], int histogramTwo([]) . 9

Index 11






Chapter 1

Data Structure Index

1.1 Data Structures

Here are the data structures with brief descriptions:

Rect
Defines a rectangle in an image. The origin is in the upper leftcorner . . . . . . . .. .. ...



Data Structure Index

Generated on Thu Feb 25 2016 16:57:35 for Histogram Matching by Doxygen



Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

ColorHistogram.h

Provides functions to compute color histograms . . . . . . . . .. .. ..o
HistogramMatching.h

Provides functions to compute histogram matchingscores . . . . . . .. ... ... ... ..



File Index

Generated on Thu Feb 25 2016 16:57:35 for Histogram Matching by Doxygen



Chapter 3

Data Structure Documentation

3.1 Rect Struct Reference

Defines a rectangle in an image. The origin is in the upper left corner.

#include <ColorHistogram.h>

Data Fields
* unsigned int x
+ unsigned inty
* unsigned int width
 unsigned int height

3.1.1 Detailed Description

Defines a rectangle in an image. The origin is in the upper left corner.

The documentation for this struct was generated from the following file:

+ ColorHistogram.h



Data Structure Documentation

Generated on Thu Feb 25 2016 16:57:35 for Histogram Matching by Doxygen



Chapter 4

File Documentation

4.1 ColorHistogram.h File Reference

Provides functions to compute color histograms.

#include <mv_types.h>
#include <swcFrameTypes.h>

Data Structures
« struct Rect
Defines a rectangle in an image. The origin is in the upper left corner.
Functions

« void computeHistogram (frameBuffer ximage, int xhistogramBuffer, u8 bins[])
Computes the color histogram of the specified image.
« void computeHistogramInRoi (frameBuffer ximage, int xhistogramBuffer, u8 bins[], Rect roi)

Computes the color histogram in the specified region of interest in the image.
41.1 Detailed Description

Provides functions to compute color histograms.

41.2 Function Documentation
41.2.1 void computeHistogram ( frameBuffer « image, int x histogramBuffer, u8 bins[] )

Computes the color histogram of the specified image.

Parameters

image | A pointer to the image whose histogram shall be computed.

histogramBuffer | The buffer in which to store the histogram.




8 File Documentation

bins | The number of bins to use for each channel of the provided image.

4.1.2.2 void computeHistograminRoi ( frameBuffer « image, int x histogramBuffer, u8 bins[ ], Rect roi )

Computes the color histogram in the specified region of interest in the image.

Parameters

image | A pointer to the image whose histogram shall be computed.

histogramBuffer | The buffer in which to store the histogram.

bins | The number of bins to use for each channel of the provided image.

roi | The region (rectangle) of interest in which to compute the histogram.

4.2 HistogramMatching.h File Reference

Provides functions to compute histogram matching scores.

#include <mv_types.h>

Functions

« float hellingerDistance (u16 bins, int histogramOne[ ], int histogramTwo[ ])
Computes the Hellinger distance of a pair of histograms.
« float histogramlIntersectionDistance (u16 bins, int histogramOne[], int histogramTwo[ ])

Computes a distance for a pair of histograms based on histogram intersection.
« float earthMoversDistance (u16 bins, int histogramOne[ ], int histogramTwo][ ])

Computes the earth mover's distance of a pair of histograms.

4.2.1 Detailed Description

Provides functions to compute histogram matching scores.

4.2.2 Function Documentation
4.2.2.1 float earthMoversDistance ( u16 bins, int histogramOne[ ], int histogramTwo[ ] )

Computes the earth mover's distance of a pair of histograms.

Parameters

bins | The number of bins to compare.

histogramOne | The first histogram to compare.

histogramTwo | The second histogram to compare.

Returns

The distance between the histograms. A floating point value in the range [0, 1].

4.2.2.2 float hellingerDistance ( u16 bins, int histogramOne[ ], int histogramTwo[ ] )

Computes the Hellinger distance of a pair of histograms.

Generated on Thu Feb 25 2016 16:57:35 for Histogram Matching by Doxygen



4.2 HistogramMatching.h File Reference

Parameters
bins | The number of bins to compare.
histogramOne | The first histogram to compare.
histogramTwo | The second histogram to compare.
Returns

The distance between the histograms. A floating point value in the range [0, 1].

4.2.2.3 float histogramintersectionDistance ( u16 bins, int histogramOne[ ], int histogramTwo[ ] )

Computes a distance for a pair of histograms based on histogram intersection.

Parameters
bins | The number of bins to compare.
histogramOne | The first histogram to compare.
histogramTwo | The second histogram to compare.
Returns

The distance between the histograms. A floating point value in the range [0, 1].

Generated on Thu Feb 25 2016 16:57:35 for Histogram Matching by Doxygen




10

File Documentation

Generated on Thu Feb 25 2016 16:57:35 for Histogram Matching by Doxygen



Index

ColorHistogram.h, 7
computeHistogram, 7
computeHistogramInRoi, 8

computeHistogram
ColorHistogram.h, 7

computeHistogramInRoi
ColorHistogram.h, 8

earthMoversDistance
HistogramMatching.h, 8

hellingerDistance
HistogramMatching.h, 8

histogramIntersectionDistance
HistogramMatching.h, 9

HistogramMatching.h, 8
earthMoversDistance, 8
hellingerDistance, 8
histogramintersectionDistance, 9

Rect, 5



Annex 11
Rotation-Invariant

Face Detector






Contents

1 Data Structure Index

1.1 Data Structures . . . . ..

2 File Index
21 FileList . ... ......

3 Data Structure Documentation
3.1 data Struct Reference . . .
3.1.1 Detailed Description
3.1.2 Field Documentation
3.1.2.1  degrees
3.1.22 img_dst.

3.1.23 n_faces detected . . . . . . . . . . ... ...

3.1.2.4 path_dst

4 File Documentation
4.1 app_config.c File Reference

4.1.1  Detailed Description

4.1.2 Macro Definition Documentation . . . . . . . . . ...
4121 CMX_CONFIG_SLICE_15_8 . . . . . . . . . . . i
4122 CMX_CONFIG_SLICE_7_0 . . . . . . . . . i
4123 L2CACHE_CFG . . . . . . . e e
4.1.3 Function Documentation . . . . . . . . ...
41381 __attribute_ . ... e
4.1.3.2 initClocksAndMemory . . . . . . . . L

4.2 app_config.h File Reference
4.2.1 Detailed Description

4.2.2 Macro Definition Documentation . . . . . . . . ... L
4221 APP_MSS CLOCKS . . . . . . . e e
4222 APP_UPA CLOCKS . . . . . . . e e

4.2.3 Function Documentation . . . . . . . . ...

4.2.3.1 initClocksAndMemory . . . . . . ..

w

o oo o0 o0 o0 o0 o O,

© © © ©O© © ©O©W 0 0 0 0 0 0 0 o0 N N N



iv CONTENTS

43 maincFileReference . . . . . . . . 9
4.3.1  Macro Definition Documentation . . . . . . . . . ..o 10
4311 N_SHAVES . . . . . . e 10

4312 PATH_SOURCE . . . . . . . . e 10

4.3.2 Function Documentation . . . . . . . ... 10
4.3.21  drawSquare . . ... .. e 10

43.2.2 drawSquareColor . . . . . . . ... 11

43.2.3 Fatal_extension . . . . . . . . .. 11

4324 POSIX_Init . . . . . . e 11

4.3.3 \Variable Documentation . . . . . . . ... 11
43381 ccv bbf custom . . . ... 11

4332 entryPoints . . . . . .. 12

4.3.3.3 faceDetectionSHAVEsO_ApplicationStart . . . . . .. ... . ... ... .... 12

4.3.3.4 faceDetectionSHAVEs3_ApplicationStart . . . . . . ... ... ... ... ... 12

4.4 rtems_config.h File Reference . . . . . . . . . . . . 12
4.41 Detailed Description . . . . . . . .. 13
4.4.2 Macro Definition Documentation . . . . . . . . ... oL 13
4421 _RTEMS CONFIG_ H_ . ... .. . .. s 13

4.4.3 Function Documentation . . . . . . . ... 13
4431 BSP_SET_CLOCK. . . . . . . . . e e 13

4432 BSP_SET_L2C_CONFIG . . . . . . . . . e 13

4.5 shave Start.cFileReference . . . . . . . . . . . o 13
451 Function Documentation . . . . . . . .. 14
4511 ApplicationStart . . . . . .. 14

Index 15




Chapter 1

Data Structure Index

1.1 Data Structures

Here are the data structures with brief descriptions:



Data Structure Index




Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

app_config.c

Application configuration Leonfile . . . . . . . . .. ... .
app_config.h

Application configuration Leon header . . . . . . . . .. ... L L o
MAIN.C . . . . e e e e
rtems_config.h

RTEMS configuration Leonheader . . . . . . . . . . . . . .
shave_Start.c . . . . . . . .



File Index




Chapter 3

Data Structure Documentation

3.1 data Struct Reference

Data Fields

« char path_dst [250]

» ccv_dense_matrix_t * img_dst
* int degrees

« int n_faces_detected

3.1.1 Detailed Description

This struct facilitates the scalability. It stores information relative to the rotate image and the result of bbf algorithm.
For each SHAVE used there will be a struct.

3.1.2 Field Documentation
3.1.2.1 int degrees

Degrees to rotate the original image

3.1.2.2 ccv_dense_matrix_tx img_dst

Object ccv_dense_matrix. It contains all information relative to the final image.

3.1.2.3 int n_faces_detected

Number of faces detected by bbf algorithm.

3.1.2.4 char path_dst[250]

Path where the rotate image will be saved.

The documentation for this struct was generated from the following file:

* main.c



Data Structure Documentation




Chapter 4

File Documentation

4.1 app_config.c File Reference

Application configuration Leon file.

#include <OsDrvCpr.h>
#include "OsDrvTimer.h"
#include <DrvShavelL2Cache.h>
#include "app_config.h"

Include dependency graph for app_config.c:

app_config.c

OsDrvCpr.h OsDrvTimer.h DrvShavel2Cache.h app_config.h

Macros

+ #define CMX_CONFIG_SLICE_7_0 (0x11111111)

+ #define CMX_CONFIG_SLICE_15_8 (0Ox11111111)

+ #define LZCACHE_CFG (SHAVE_L2CACHE_NORMAL_MODE)
Functions

+ CmxRamLayoutCfgType __attribute__ ((section(".cmx.ctrl")))

« int initClocksAndMemory (void)

41.1 Detailed Description
Application configuration Leon file.
Copyright

All code copyright Movidius Ltd 2012, all rights reserved. For License Warranty see: common/license.xt



File Documentation

412 Macro Definition Documentation

4.1.2.1 #define CMX_CONFIG_SLICE_15_8 (0x11111111)

4.1.2.2 #define CMX_CONFIG_SLICE_7_0 (0x11111111)

4.1.2.3 #define L2CACHE_CFG (SHAVE_L2CACHE_NORMAL_MODE)

41.3 Function Documentation

41.3.1 CmxRamLayoutCfgType __ attribute__( (section(".cmx.ctrl")) )

41.3.2 intinitClocksAndMemory ( void )

Setup all the clock configurations needed by this application and also the ddr

Returns
0 on success, non-zero otherwise

4.2 app_config.h File Reference

Application configuration Leon header.

This graph shows which files directly or indirectly include this file:

app_config.h

app_config.c rtems_config.h

main.c

Macros
 #define APP_MSS_CLOCKS
« #define APP_UPA_CLOCKS
Functions

« int initClocksAndMemory (void)




4.3 main.c File Reference 9

4.2.1 Detailed Description

Application configuration Leon header.

Copyright

All code copyright Movidius Ltd 2012, all rights reserved. For License Warranty see: common/license.ixt

4.2.2 Macro Definition Documentation
4.2.2.1 #define APP_MSS_CLOCKS
Value:

(DEV_MSS_APB_SLV | \
DEV_MSS_APB2_CTRL | \
DEV_MSS_AXI_BRIDGE | \
DEV_MSS_MXI_CTRL I\
DEV_MSS_MXI_DEFSLV )

42.2.2 #define APP_UPA_CLOCKS
Value:

(DEV_UPA_SHO I\
DEV_UPA_SH3 I\
DEV_UPA_SHAVE_L2 | \
DEV_UPA_CDMA I\
DEV_UPA_CTRL )

For each SHAVE used, is necessary add it in the UPA_CLOCKS variable. Otherwise, the execution will stop in call
of SHAVE. DEV_UPA_SHO |\ add the SHAVEO DEV_UPA_SH3 | \ add the SHAVE3

4.2.3 Function Documentation
4.2.3.1 intinitClocksAndMemory ( void )

Setup all the clock configurations needed by this application and also the ddr

Returns

0 on success, non-zero otherwise

4.3 main.c File Reference

#include <ccv.h>

#include <stdlib.h>

#include <stdio.h>

#include <DrvCpr.h>

#include "OsDrvSvu.h"
#include "rtems_config.h"
#include <DrvShavelL2Cache.h>
#include <SDCardIO.h>




10 File Documentation

Include dependency graph for main.c:

stdlib.h stdio.h

cev.h DrvCpr.h OsDrvSvu.h DrvShavel2Cache.h SDCardIO.h

rtems_config.h

SDCardlIORTEMSConfig.h

app_config.h

Data Structures

« struct data

Macros

« #define N_SHAVES 2

+ #define PATH_SOURCE "/mnt/sdcard/Rotation-invariant_faceDetector/lena.png"
Functions

+ void drawSquare (ccv_dense_matrix_t ximg, int SquareX, int SquareY, int w, u8 color)

This function is used for draw a square in a ccv_dense_matrix_t« object. Image must be in grayscale.
« void drawSquareColor (ccv_dense_matrix_t ximg, int SquareX, int SquareY, int w, u8 red, u8 green, u8 blue)

This function is used for draw a square in a ccv_dense_matrix_tx object. Image must be in RGB.
+ void POSIX_Init (void *args)
« void Fatal_extension (Internal_errors_Source the_source, bool is_internal, uint32_t the_error)

Variables

» ccv_bbf_param_t ccv_bbf_custom

» u32 faceDetectionSHAVEsOQ_ApplicationStart
+ u32 faceDetectionSHAVEs3_ApplicationStart
+ u32 entryPoints [N_SHAVES]

4.3.1 Macro Definition Documentation
4.3.1.1 #define N_SHAVES 2

Number of SHAVESs used in this app

4.3.1.2 #define PATH_SOURCE "/mnt/sdcard/Rotation-invariant_faceDetector/lena.png”

Image path with this app works

4.3.2 Function Documentation
4.3.2.1 void drawSquare ( ccv_dense_matrix_t  img, int SquareX, int SquareY, int w, u8 color )

This function is used for draw a square in a ccv_dense_matrix_tx object. Image must be in grayscale.




4.3 main.c File Reference

Parameters
in img | image where square will be drawn
in SquareX | x coordinate of the Start of square
in SquareY | y coordinate of the Start of square
in w | longitude
in color | square color. The value must be between 0 and 255

4.3.2.2 void drawSquareColor ( ccv_dense_matrix_t x img, int SquareX, int SquareY, int w, u8 red, u8 green, u8 blue )

This function is used for draw a square in a ccv_dense_matrix_t* object. Image must be in RGB.

Parameters
in img | image where square will be drawn
in SquareX | x coordinate of the Start of square
in SquareY | y coordinate of the Start of square
in w | longitude
in red | red component The value must be between 0 and 255
in green | green component The value must be between 0 and 255
in blue | blue component The value must be between 0 and 255

4.3.2.3 void Fatal_extension ( Internal_errors_Source the_source, bool is_internal, uint32_t the_error )
4.3.2.4 void POSIX_Init ( void * args )

< Data struct for the SHAVEO
< Data struct for the SHAVE3

Here is the call graph for this function:

initClocksAndMemory

POSIX_Init

B

drawSquare

4.3.3 Variable Documentation

4.3.3.1 ccv_bbf_param_t ccv_bbf_custom

Initial value:

={
.interval = 3,
.min_neighbors = 2,

.accurate = 1,




12 File Documentation

.flags = 0,

.size = {
90,
90,

Custom settings for bbf detection. With this, the time of face detection is reduced from 3.5 seconds to 0.7 seconds.
The original values can be found in ccv_bbf file from libccv library.

4.3.3.2 u32 entryPointsIN_SHAVES]

Initial value:

= {
(u32) &faceDetectionSHAVEsO_ApplicationStart,
(u32) &faceDetectionSHAVEs3_ApplicationStart,

Array of entrypoints. It can facilitate the scalability

4.3.3.3 u32 faceDetectionSHAVEsO_ApplicationStart
4.3.3.4 u32 faceDetectionSHAVEs3_ApplicationStart

SHAVE entry point function serves as starting execution point on SHAVE. One for every SHAVE and execution point.
Its name follow the next structure APP_NAME: faceDetectionSHAVEs n_shave: 0 and 3. entry point: Application-
Start This fields must be declared in the makefile

4.4 rtems_config.h File Reference

RTEMS configuration Leon header.

#include "app_config.h"
#include <SDCardIORTEMSConfig.h>
Include dependency graph for rtems_config.h:

rtems_config.h

app_config.h SDCardlORTEMSConfig.h




4.5 shave_Start.c File Reference 13

This graph shows which files directly or indirectly include this file:

rtems_config.h

main.c

Macros

+ #define _RTEMS_CONFIG_H_

Functions
+ BSP_SET_CLOCK (12000, 200000, 1, 1, DEFAULT_RTEMS_CSS_LOS_CLOCKS, APP_MSS_CLOCKS,

APP_UPA_CLOCKS, 0, 0)
« BSP_SET_L2C_CONFIG (0, L2C_REPL_LRU, 0, L2C_MODE_COPY_BACK, 0, NULL)

441 Detailed Description

RTEMS configuration Leon header.

Copyright

All code copyright Movidius Ltd 2012, all rights reserved. For License Warranty see: common/license.txt

4.4.2 Macro Definition Documentation
4.42.1 #define RTEMS_CONFIG_H_
4.4.3 Function Documentation

4431 BSP_SET_CLOCK ( 12000, 200000, 1, 1, DEFAULT_RTEMS_CSS_LOS_CLOCKS, APP_MSS_CLOCKS,,
APP_UPA_CLOCKS, 0, 0 )

4432 BSP_SET_L2C_CONFIG( 0, L2C_REPL_LRU, 0, L2C_MODE_COPY_BACK, 0, NULL )

4.5 shave Start.c File Reference

#include <svuCommonShave.h>
#include "ccv.h"
#include "ccv_internal.h"




14 File Documentation

Include dependency graph for shave_Start.c:

shave Start.c

svuCommonShave.h cev.h ccv_internal.h

Functions
« void ApplicationStart (ccv_dense_matrix_t ximg_src, ccv_dense_matrix_t ximg_dst, int degrees)
SHAVE entrypoint. ccv_perspective_transform will be running here.
4.5.1 Function Documentation
4.51.1 void ApplicationStart ( ccv_dense_matrix_t * img_src, ccv_dense_matrix_t * img_dst, int degrees )

SHAVE entrypoint. ccv_perspective_transform will be running here.

Parameters
in img_src | source image
in img_dst | destination image
in degrees | degrees to rotate




Index

_RTEMS_CONFIG_H_
rtems_config.h, 13

__attribute
app_config.c, 8

APP_MSS_CLOCKS
app_config.h, 9

APP_UPA_CLOCKS
app_config.h, 9

app_config.c, 7
__attribute_ , 8

CMX_CONFIG_SLICE_15_8, 8

CMX_CONFIG_SLICE_7_0, 8
initClocksAndMemory, 8
L2CACHE_CFG, 8
app_config.h, 8
APP_MSS_CLOCKS, 9
APP_UPA_CLOCKS, 9
initClocksAndMemory, 9
ApplicationStart
shave_Start.c, 14

BSP_SET_CLOCK
rtems_config.h, 13

BSP_SET_L2C_CONFIG
rtems_config.h, 13

CMX_CONFIG_SLICE_15_8
app_config.c, 8

CMX_CONFIG_SLICE_7_0
app_config.c, 8

ccv_bbf _custom
main.c, 11

data, 5
degrees, 5
img_dst, 5
n_faces_detected, 5
path_dst, 5
degrees
data, 5
drawSquare
main.c, 10
drawSquareColor
main.c, 11

entryPoints
main.c, 12

faceDetectionSHAVEsO_ApplicationStart

main.c, 12

faceDetectionSHAVES3_ApplicationStart

main.c, 12
Fatal extension
main.c, 11

img_dst
data, 5
initClocksAndMemory
app_config.c, 8
app_config.h, 9

L2CACHE_CFG
app_config.c, 8

main.c, 9
ccv_bbf_custom, 11
drawSquare, 10
drawSquareColor, 11
entryPoints, 12

faceDetectionSHAVEsO_ApplicationStart, 12
faceDetectionSHAVEs3_ApplicationStart, 12

Fatal_extension, 11
N_SHAVES, 10
PATH_SOURCE, 10
POSIX_Init, 11

N_SHAVES
main.c, 10

n_faces_detected
data, 5

PATH_SOURCE
main.c, 10
POSIX_Init
main.c, 11
path_dst
data, 5

rtems_config.h, 12
_RTEMS_CONFIG_H_, 13
BSP_SET _CLOCK, 13
BSP_SET_L2C_CONFIG, 13

shave Start.c, 13
ApplicationStart, 14



Annex 12
Cherokey4WD






Contents

1 README 1
2 Module Index 3
2.1 Modules . . . . . e e 3
3 File Index 5
3.1 FileList . . . o e 5
4 Module Documentation 7
4.1 Grouptitle . . . . L e 7
4.1.1 Detailed Description . . . . . . . . . 7

4.1.2 Function Documentation . . . . . . . . .. 7
41.21 CherokeydWDBackward . . . . . . . . . . . ... 7

41.22 CherokeydWDForward . . . . . . . . . . . e 7

4.1.2.3 Cherokey4WDSetDirectionSpeed . . . . . . . . . . .. ... 8

4.1.24 CherokeydWDSetup . . . . . . . . o 8

41.25 CherokeydWDStop . . . . . . . . i 8

41.26 CherokeydWDTurnLeft . . . . . . . . . . . . . 8

4.1.27 Cherokey4dWDTurnRight . . . . . . . . . .. . . 8

4.2 CherokeydWD from Myriad . . . . . . . . . . L 10
5 File Documentation 11
5.1 CherokeydWD.h File Reference . . . . . . . . . . . . 11
5.1.1  Detailed Description . . . . . . .. 11

5.2 CherokeydWDArduino.c File Reference . . . . . . . . . . . . . 11
5.2.1 Detailed Description . . . . . .. L 11

5.3 CherokeydWDArduino.h File Reference . . . . . . . . . . . .. . o 12
5.3.1 Detailed Description . . . . . . . . e e 12

5.4 CherokeydWDArduinoTypes.h File Reference . . . . . . . . . . .. . .. . .. .. .. ... 12
5.4.1 Detailed Description . . . . . . . 12

5.5 CherokeydWDBoards.h File Reference . . . . . . . . . . . . .. . ... . .. .. .. ... ... 12
5.5.1 Detailed Description . . . . . . . . L 12

5.6 CherokeydWDMyriad.h File Reference . . . . . . . . . . . . . L 12



iv CONTENTS

5.6.1 Detailed Description . . . . . . ... 12
5.7 CherokeydWDRaspberryPi.h File Reference . . . . . . . . . . . ... .. ... 12
5.7.1 Detailed Description . . . . . . . . . 12

Index 13




Chapter 1

README

Library for controlling the Cherokey4WD robot.

Structure

» Cherokey4WD.h, Cherokey4WD.c Main library files, provide functionality for moving forward/backward/turn
left/turn right and stop.

» Cherokey4dWDBoards.h Parser to select the proper includes according to the current board, the parses selects
the proper board based on the available #define instructions.

+ Cherokey4dWD«BOARDNAME:.h,.c Board specific files

For install unstructions refer to INSTALL _xBOARD:.txt files.



README




Chapter 2

Module Index

2.1 Modules

Here is a list of all modules:

Group title . . . . . e
CherokeydWD from Myriad . . . . . . . . o e



Module Index




Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

CherokeydWD.h . . . . e e 11
CherokeydWDArdUINO.C . . .« o o o o e e e e e e e e e e e 11
CherokeydWDArduino.h . . . . . L . o e 12
CherokeydWDArduinoTypes.h . . . . . . . o e 12
CherokeydWDBoards.h . . . . . . . . o e 12
CherokeydWDMyriad.h . . . . . . . o e e 12

Cherokey4WDRaspberryPi.h



File Index




Chapter 4

Module Documentation

4.1  Group title

Group briefing.

Functions

+ void Cherokey4WDSetup (uint8 pin_m1_enable, uint8 pin_m1_pwm, uint8 pin_m2_enable, uint8 pin_m2_-
pwm, uint8 pin_state_forward)

» void Cherokey4WDSetDirectionSpeed (uint8 direction_left, uint8 speed_left, uint8 direction_right, uint8
speed_right)

+ void Cherokey4WDStop ()

+ void Cherokey4WDForward (uint8 speed_left, uint8 speed_right)

+ void Cherokey4WDBackward (uint8 speed_left, uint8 speed_right)

+ void Cherokey4WDTurnLeft (uint8 speed_left, uint8 speed_right)

« void Cherokey4WDTurnRight (uint8 speed_left, uint8 speed_right)

41.1 Detailed Description

Group briefing. Detailed description

41.2 Function Documentation
4.1.2.1 void Cherokey4WDBackward ( uint8 speed_left, uint8 speed_right )

Moves the Cherokey 4WD backward at the specified speed (0 to 255) on each of the wheels (left and right wheels)

Parameters

speed_left

speed_right

4.1.2.2 void Cherokey4dWDForward ( uint8 speed_left, uint8 speed_right )

Moves the Cherokey 4WD forward at the specified speed (0 to 255) on each of the wheels (left and right wheels)



Module Documentation

Parameters

speed_left

speed_right

4.1.2.3 void Cherokey4WDSetDirectionSpeed ( uint8 direction_left, uint8 speed_left, uint8 direction_right, uint8 speed_right )

Set the direction and speed for the wheels of the car

Parameters

direction_left

Direction of the wheels on the left side

speed_left

Speed of the wheels on the left side (0 to 255)

direction_right

Direction of the wheels on the right side

speed_right

Speed of the wheels on the right side (0 to 255)

4.1.2.4 void Cherokey4WDSetup ( uint8 pin_m1_enable, uint8 pin_m1_pwm, uint8 pin_m2_enable, uint8 pin_m2_pwm, uint8
pin_state_forward )

Set up the pins which are going to be used to control the Cherokey4WD. Set the pin state which corresponds to the
forward direction (HIGH or LOW)

Parameters

pin_m1_enable

pin_m1_pwm

pin_m2_enable

pin_m2_pwm

pin_state_-
forward

4.1.2.5 void Cherokey4WDStop ( )

Stop the car

4.1.2.6 void Cherokey4WDTurnLeft ( uint8 speed_left, uint8 speed_right )

Turns the Cherokey 4WD to the left at the specified speed (0 to 255) on each of the wheels (left and right wheels)

Parameters

speed_left

speed_right

4.1.2.7 void Cherokey4WDTurnRight ( uint8 speed_left, uint8 speed_right )

Turns the Cherokey 4WD to the right at the specified speed (0 to 255) on each of the wheels (left and right wheels)

Parameters

speed_left




4.1 Group title

speed_right




10 Module Documentation

4.2 Cherokey4WD from Myriad

Controls the Cherokey4WD from the Myriad processor.

Controls the Cherokey4WD from the Myriad processor. Defines the required functions to control the Myriad pins




Chapter 5

File Documentation

5.1 Cherokey4WD.h File Reference

#include "Cherokey4WDBoards.h"

Functions

+ void Cherokey4WDSetup (uint8 pin_m1_enable, uint8 pin_m1_pwm, uint8 pin_m2_enable, uint8 pin_m2_-
pwm, uint8 pin_state_forward)

» void Cherokey4WDSetDirectionSpeed (uint8 direction_left, uint8 speed_left, uint8 direction_right, uint8
speed_right)

+ void Cherokey4WDStop ()

+ void Cherokey4WDForward (uint8 speed_left, uint8 speed_right)

+ void Cherokey4WDBackward (uint8 speed_left, uint8 speed_right)

+ void Cherokey4WDTurnLeft (uint8 speed_left, uint8 speed_right)

« void Cherokey4WDTurnRight (uint8 speed_left, uint8 speed_right)

5.1.1 Detailed Description

Copyright

All code copyright Movidius Ltd 2012, all rights reserved For License Warranty see: common/license.txt

Created on: 20 Oct 2015 Author: dexmont

5.2 Cherokey4dWDArduino.c File Reference

#include "Cherokey4WDArduino.h"

5.2.1 Detailed Description
Copyright

All code copyright Movidius Ltd 2012, all rights reserved For License Warranty see: common/license.txt

Created on: 27 Oct 2015 Author: dexmont



12 File Documentation

5.3 Cherokey4WDArduino.h File Reference

5.3.1 Detailed Description

Copyright

All code copyright Movidius Ltd 2012, all rights reserved For License Warranty see: common/license.txt

Created on: 27 Oct 2015 Author: dexmont

5.4 Cherokey4dWDArduinoTypes.h File Reference

5.4.1 Detailed Description

Copyright

All code copyright Movidius Ltd 2012, all rights reserved For License Warranty see: common/license.txt

Created on: 27 Oct 2015 Author: dexmont

5.5 Cherokey4dWDBoards.h File Reference

5.5.1 Detailed Description

Copyright

All code copyright Movidius Ltd 2012, all rights reserved For License Warranty see: common/license.txt

Created on: 20 Oct 2015 Author: dexmont

5.6 Cherokey4dWDMyriad.h File Reference

5.6.1 Detailed Description

Copyright

All code copyright Movidius Ltd 2012, all rights reserved For License Warranty see: common/license.txt

Created on: 20 Oct 2015 Author: dexmont

5.7 Cherokey4dWDRaspberryPi.h File Reference

5.7.1 Detailed Description

Copyright

All code copyright Movidius Ltd 2012, all rights reserved For License Warranty see: common/license.txt

Created on: 21 Oct 2015 Author: dexmont




Index

Cherokey4WD from Myriad, 10
Cherokey4WD.h, 11
Cherokey4WDArduino.c, 11
Cherokey4WDArduino.h, 12
Cherokey4WDArduinoTypes.h, 12
Cherokey4WDBackward

Group title, 7
Cherokey4WDBoards.h, 12
Cherokey4WDForward

Group title, 7
Cherokey4WDMyriad.h, 12
Cherokey4WDRaspberryPi.h, 12
Cherokey4WDSetDirectionSpeed

Group title, 8
Cherokey4WDSetup

Group title, 8
Cherokey4WDStop

Group title, 8
Cherokey4WDTurnLeft

Group title, 8
Cherokey4WDTurnRight

Group title, 8

Group title, 7
Cherokey4WDBackward, 7
Cherokey4WDForward, 7
Cherokey4WDSetDirectionSpeed, 8
Cherokey4WDSetup, 8
Cherokey4WDStop, 8
Cherokey4WDTurnLeft, 8
Cherokey4WDTurnRight, 8



	EoT_D3.3 - no track changes
	1. Document Information
	2. Document History
	3. Abstract
	4. Table of Contents
	5. List of Figures
	6. Introduction
	6.1. Myriad 2
	6.2. RTEMS
	6.3. Myriad 2 programming paradigms
	6.3.1. Standard programming paradigm
	6.3.2. The One Leon programming paradigm
	6.3.3. Bare metal programming paradigm
	6.3.4. Selected paradigm

	6.4. EoT firmware
	6.5. EoT repository

	7. WiFi data transfer
	7.1. Introduction
	7.1. Known issues
	7.2. Unit tests
	Expected output

	7.3. Licensing
	7.3.1. Simplelink library

	7.4. Code
	7.5. Conclusions and Future work

	8. Camera interface
	8.1. Introduction
	8.2. Known issues
	8.3. Unit tests
	8.4. Licensing
	8.5. Code
	8.6. Conclusions and Future work

	9. Video streaming
	9.1. Introduction
	9.2. RTSP Server
	9.2.1. RTSP Server Options

	9.3. Supported  Players
	9.3.1. RTSPPlayer TCP configuration
	9.3.2. VLC Player TCP configuration.

	9.4. Known issues
	9.5. Unit tests
	9.6. Code
	9.7. Conclusions and Future work

	10. Input buttons/DIP switches
	10.1. Introduction
	10.2. Unit tests
	10.3. Code
	10.4. Conclusions and Future work

	11. SD card management
	11.1. Introduction
	11.2. Known issues
	11.3. Unit tests
	11.4. Licensing
	11.5. Code
	11.6. Conclusions and Future work

	12. Bootloader
	12.1. Introduction
	12.2. Known issues
	12.3. Unit tests
	12.4. Code
	12.5. Conclusions and Future work

	13. Control mode API, embedded side
	14. Audio input & output
	14.1. Introduction
	14.2. Licensing
	14.3. Code
	14.4. Conclusions and Future work

	15. Computer vision: CNN
	15.1. Introduction
	15.2. Movidius Fathom CNN framework
	15.3. MvTensor Implementation Details
	15.4. GoogleNet Example
	15.4.1. MvMatMul Library
	15.4.2. MvTensor Library
	15.4.3. MvTensor API Description
	15.4.3.1. Scope: 

	15.4.3.2. Parameters
	15.4.3.3. genData Container
	15.4.3.4. Use-cases for storage
	15.4.3.5. Addressing worked examples

	15.4.4. Fathom Data Structure

	15.4.4.1.  t_MvTensorDebugInfo Struct Reference
	15.4.4.2. t_mvTensorGenData Struct Reference 

	15.4.4.3.  t_MvTensorMyriadResources Struct Reference 

	15.4.4.4. t_MvTensorParam Struct Reference 


	15.4.5. mvTensor.h File Reference 

	15.4.5.1. MvTensor API – interface to MvTensor compute library. 




	16. Computer vision: Colour histogram matching
	16.1. Introduction
	16.2. Unit tests
	16.3. Code
	16.4. Conclusions and Future work

	17. Computer vision: Keypoint matching
	17.1. Introduction
	17.1.1. Description of the API

	17.2. Known issues
	17.3. Unit tests
	17.4. Licensing
	17.5. Code
	17.6. Conclusions and Future work

	18. Computer vision: Rotation-invariant face detector
	18.1. Introduction
	18.1.1. Code structure
	18.1.2. Optimizations
	18.1.3. How To

	18.2. Known issues
	18.3. Unit tests
	18.3.1. Output expected

	18.4. Licensing
	18.5. Code
	18.6. Conclusions and Future work

	19. Computer vision: Sparse optical flow (LK point tracking)
	19.1. Introduction
	19.1.1. OpenCV
	19.1.2. vTrack

	19.2. Known issues
	19.2.1. OpenCV
	19.2.2. vTrack

	19.3. Unit tests
	19.3.1. OpenCV
	19.3.2. vTrack
	Test 1
	Expected output

	Test 2
	Expected output

	Test 3
	Expected output

	Test 4
	Expected output

	Test 5
	Expected output

	Test 6
	Expected output

	Test 7


	19.4. Licensing
	19.4.1. OpenCV
	19.4.2. vTrack

	19.5. Code
	19.5.1. OpenCV
	Dependences

	19.5.2. vTrack
	Folder structure:
	Required:


	19.6. Conclusions and Future work

	20. Power management
	20.1. Introduction
	20.2. Low power states
	20.2.1. Camera standby modes
	20.2.2. WiFi power policies
	20.2.3. Myriad power states

	20.3. Unit tests
	20.4. Code
	20.4.1. WifiFunctions power management functions
	20.4.2. Camera power management functions
	 int standby_camera ()
	Returns:

	 int wakeup_camera ()
	Returns:


	20.4.3. Myriad power management functions
	OsDrvCpr.h File Reference
	 int OsDrvCprPowerTurnOffIsland (enum PowerIslandIndex  island_index)
	Returns:

	 int OsDrvCprPowerTurnOffIslandRaw (u32  islands_mask, u32  iso_ticks, u32  disable_ticks)
	Parameters:
	Returns:

	 int OsDrvCprPowerTurnOnIsland (enum PowerIslandIndex  island_index)
	Returns:

	 int OsDrvCprPowerTurnOnIslandRaw (u32  islands_mask, u32  trickle_ticks, u32  enable_ticks)
	Parameters:
	Returns:
	DrvCprDefinesMa2100.h File Reference


	 Enumerations

	20.5. Conclusions and Future work

	21. Control mode API, Desktop side
	22. Control mode API, Android
	23. Other vision libraries
	23.1. Introduction
	23.1.1. OpenCV 1.0
	23.1.2. OpenCV 2.4 in the cloud
	23.1.2.1. Pythonanywhere configuration
	23.1.2.2. Creating your own server

	23.1.3. libccv
	23.1.4. Quirc
	23.1.5. Google Cloud Vision API

	23.2. Known issues
	23.2.1. OpenCV 1.0
	Limitations

	23.2.2. OpenCV 2.4 in the cloud
	23.2.3. libccv
	Limitations

	23.2.4. Quirc
	Limitations


	23.3. Unit tests
	23.3.1. OpenCV 1.0
	List of examples
	Expected output
	Benchmarks

	23.3.2. OpenCV 2.4 in the cloud
	Expected output

	23.3.3. libccv
	List of examples
	Expected output

	23.3.4. Quirc
	List of examples and expected output


	23.4. Licensing
	23.4.1. OpenCV 1.0
	23.4.2. OpenCV 2.4 in the cloud
	23.4.3. libccv
	23.4.4. Quirc

	23.5. Code
	23.5.1. OpenCV 1.0
	Dependences

	23.5.2. OpenCV 2.4 in the cloud
	Dependences

	23.5.3. libccv
	Dependences

	23.5.4. Quirc
	Dependences


	23.6. Conclusions and Future work

	24. Motor control
	24.1. Introduction
	24.2. Motion Control API
	24.2.1. Cherokey 4WD
	24.2.2. EoT DevBoard and Cherokey 4WD Hardware interface

	24.3. Android App for Ground Robot control.
	24.3.1. Mobile Robot Control Protocol

	24.4. Known issues
	24.5. Unit tests
	24.6. Licensing
	24.7. Code
	24.8. Conclusions and Future work

	25. Conclusions
	26. Glossary

	D3.3 Annexes
	01_WifiFunctions
	1 Data Structure Index
	1.1 Data Structures

	2 File Index
	2.1 File List

	3 Data Structure Documentation
	3.1 WifiConnectionState Struct Reference
	3.1.1 Field Documentation
	3.1.1.1 channel
	3.1.1.2 mode
	3.1.1.3 password
	3.1.1.4 security
	3.1.1.5 ssid_name



	4 File Documentation
	4.1 WifiFunctions.h File Reference
	4.1.1 Detailed Description
	4.1.2 Macro Definition Documentation
	4.1.2.1 CLR_STATUS_BIT
	4.1.2.2 DEFAULT_CHANNEL
	4.1.2.3 DEFAULT_PASSWORD
	4.1.2.4 DEFAULT_SECURITY
	4.1.2.5 DEFAULT_SSID
	4.1.2.6 GET_STATUS_BIT
	4.1.2.7 IS_CONNECTED
	4.1.2.8 IS_CONNECTION_FAILED
	4.1.2.9 IS_IP_ACQUIRED
	4.1.2.10 IS_IP_LEASED
	4.1.2.11 IS_P2P_NEG_REQ_RECEIVED
	4.1.2.12 IS_PING_DONE
	4.1.2.13 IS_SMARTCONFIG_DONE
	4.1.2.14 IS_SMARTCONFIG_STOPPED
	4.1.2.15 IS_STA_CONNECTED
	4.1.2.16 SET_STATUS_BIT
	4.1.2.17 SL_STOP_TIMEOUT

	4.1.3 Enumeration Type Documentation
	4.1.3.1 ConnectionMode
	4.1.3.2 e_AppStatusCodes
	4.1.3.3 e_StatusBits

	4.1.4 Function Documentation
	4.1.4.1 configureSimpleLinkToDefaultState
	4.1.4.2 connectToAP
	4.1.4.3 disconnectFromAP
	4.1.4.4 generateAP
	4.1.4.5 generateAPFromDefaultProfile
	4.1.4.6 generateAPFromProfile
	4.1.4.7 generateAPFromProfileOnErrorDefault
	4.1.4.8 generateAPSaveProfile
	4.1.4.9 getHostIP
	4.1.4.10 getLessSaturatedChannel
	4.1.4.11 getOwnIP
	4.1.4.12 getOwnMAC
	4.1.4.13 getProfile
	4.1.4.14 getStationIP
	4.1.4.15 getWifiState
	4.1.4.16 ping
	4.1.4.17 pingToConnectedDevice
	4.1.4.18 prettyIPv4
	4.1.4.19 printPrettyIPv4_char
	4.1.4.20 printPrettyIPv4_u32
	4.1.4.21 printPrettyMAC
	4.1.4.22 printWifiParams
	4.1.4.23 removeProfiles
	4.1.4.24 restoreProfile
	4.1.4.25 saveCurrentProfile
	4.1.4.26 saveProfile
	4.1.4.27 scanWifi
	4.1.4.28 scanWifiRestoreState
	4.1.4.29 setOwnMAC
	4.1.4.30 setPowerPolicy
	4.1.4.31 setWifiState
	4.1.4.32 setWlanPower
	4.1.4.33 sleepWlanDevice
	4.1.4.34 waitClients
	4.1.4.35 wlanSetMode




	02_Camera
	1 Data Structure Index
	1.1 Data Structures

	2 File Index
	2.1 File List

	3 Data Structure Documentation
	3.1 bitstring Struct Reference
	3.1.1 Field Documentation
	3.1.1.1 length
	3.1.1.2 value


	3.2 colorYCbCr Struct Reference
	3.2.1 Field Documentation
	3.2.1.1 Cb
	3.2.1.2 Cr
	3.2.1.3 Y



	4 File Documentation
	4.1 camera.h File Reference
	4.1.1 Detailed Description
	4.1.2 Macro Definition Documentation
	4.1.2.1 CAM_BPP
	4.1.2.2 CAM_FRAME_SIZE_BYTES
	4.1.2.3 CAM_WINDOW_START_COLUMN
	4.1.2.4 CAM_WINDOW_START_ROW
	4.1.2.5 DDR_AREA
	4.1.2.6 FIRST_INCOMING_BUF_ID
	4.1.2.7 FIRST_OUTGOING_BUF_ID
	4.1.2.8 MAX_USED_BUF
	4.1.2.9 WINDOW_HEIGHT
	4.1.2.10 WINDOW_WIDTH

	4.1.3 Function Documentation
	4.1.3.1 AllocateNextCamFrameBuf
	4.1.3.2 getJpegFrame
	4.1.3.3 init_camera
	4.1.3.4 loop_camera
	4.1.3.5 prepare_camera
	4.1.3.6 prepareDriverData
	4.1.3.7 reconfigure_camera
	4.1.3.8 standby_camera
	4.1.3.9 start_camera
	4.1.3.10 stop_camera
	4.1.3.11 take_snapshot
	4.1.3.12 wakeup_camera

	4.1.4 Variable Documentation
	4.1.4.1 image
	4.1.4.2 image_size_in_bytes
	4.1.4.3 last_frame_buffer


	4.2 jpeg_codec.h File Reference
	4.2.1 Macro Definition Documentation
	4.2.1.1 BYTE
	4.2.1.2 Cb
	4.2.1.3 Cr
	4.2.1.4 DWORD
	4.2.1.5 MAXBUFFERJPEG
	4.2.1.6 SBYTE
	4.2.1.7 SDWORD
	4.2.1.8 SWORD
	4.2.1.9 WORD
	4.2.1.10 writebyte
	4.2.1.11 writeword
	4.2.1.12 Y

	4.2.2 Function Documentation
	4.2.2.1 convert2Jpeg




	03_RTEMS_RTSP_camera
	1 Data Structure Index
	1.1 Data Structures

	2 File Index
	2.1 File List

	3 Data Structure Documentation
	3.1 linkedlist Struct Reference
	3.1.1 Field Documentation
	3.1.1.1 current
	3.1.1.2 head
	3.1.1.3 leaf
	3.1.1.4 size


	3.2 node Struct Reference
	3.2.1 Field Documentation
	3.2.1.1 next
	3.2.1.2 prev
	3.2.1.3 value


	3.3 RtspClient Struct Reference
	3.3.1 Detailed Description
	3.3.2 Field Documentation
	3.3.2.1 session
	3.3.2.2 socketID


	3.4 RtspServer Struct Reference
	3.4.1 Detailed Description
	3.4.2 Field Documentation
	3.4.2.1 LocalAddr
	3.4.2.2 nonBlocking
	3.4.2.3 ServerSockID


	3.5 RtspSession Struct Reference
	3.5.1 Detailed Description
	3.5.2 Field Documentation
	3.5.2.1 clientSockID
	3.5.2.2 messageN
	3.5.2.3 sessionID
	3.5.2.4 state



	4 File Documentation
	4.1 linkedlist.h File Reference
	4.1.1 Macro Definition Documentation
	4.1.1.1 LL_VERSION

	4.1.2 Typedef Documentation
	4.1.2.1 item

	4.1.3 Function Documentation
	4.1.3.1 ll_clear
	4.1.3.2 ll_create
	4.1.3.3 ll_delete
	4.1.3.4 ll_dump
	4.1.3.5 ll_exists
	4.1.3.6 ll_get_first
	4.1.3.7 ll_get_index
	4.1.3.8 ll_get_last
	4.1.3.9 ll_get_next
	4.1.3.10 ll_get_prev
	4.1.3.11 ll_item_position
	4.1.3.12 ll_pop_first
	4.1.3.13 ll_pop_last
	4.1.3.14 ll_print
	4.1.3.15 ll_print_filter
	4.1.3.16 ll_push_first
	4.1.3.17 ll_push_last
	4.1.3.18 ll_remove_item
	4.1.3.19 ll_sort


	4.2 rtsp.h File Reference
	4.2.1 Macro Definition Documentation
	4.2.1.1 BUF_SIZE
	4.2.1.2 KJpegHeaderSize
	4.2.1.3 KRtpHeaderSize
	4.2.1.4 PACKAGE_LENGHT
	4.2.1.5 PORT_NUM
	4.2.1.6 RTP_MARKER_END
	4.2.1.7 RTP_MARKER_NO_END

	4.2.2 Typedef Documentation
	4.2.2.1 RtspClient
	4.2.2.2 RtspServer
	4.2.2.3 RtspSession
	4.2.2.4 RtspState

	4.2.3 Enumeration Type Documentation
	4.2.3.1 RtspState

	4.2.4 Function Documentation
	4.2.4.1 closeSession
	4.2.4.2 compare_RtspClients
	4.2.4.3 generateSessionID
	4.2.4.4 RTSP_step
	4.2.4.5 runRTSPServer
	4.2.4.6 sendImage
	4.2.4.7 sendToAllClients
	4.2.4.8 set_header
	4.2.4.9 startRTSPServer




	04_LEDs
	1 File Index
	1.1 File List

	2 File Documentation
	2.1 LEDs.h File Reference
	2.1.1 Detailed Description
	2.1.2 Function Documentation
	2.1.2.1 enableButtonsSwitchAndLeds()
	2.1.2.2 readButton(u8 buttonState)
	2.1.2.3 readDip(u8 dipState)
	2.1.2.4 setLedModeConstant(u8 led, u8 state)
	2.1.2.5 setLedModeContinuousPulsed(u8 led, enum Duration duration, enum DutyCycle dutyCycle)
	2.1.2.6 setLedModePowerStatus(u8 led)
	2.1.2.7 setLedModePulsedSequence(u8 led, enum SequenceLength sequenceLength, enum Duration duration, enum DutyCycle dutyCycle)



	Index

	05_Crypto
	File Index
	File List

	File Documentation
	Crypto.h File Reference
	Detailed Description
	Typedef Documentation
	nonceGeneratorFunction

	Function Documentation
	CryptoDecrypt
	CryptoEncrypt
	CryptoSetKey
	CryptoSetNonceGenerator



	Index

	06_SDCardIO
	File Index
	File List

	File Documentation
	SDCardIO.h File Reference
	Function Documentation
	SDCardDirCd
	SDCardDirCdUp
	SDCardDirClose
	SDCardDirCountDirectories
	SDCardDirCountDirectoriesWithDir
	SDCardDirCountFiles
	SDCardDirCountFilesWithDir
	SDCardDirExists
	SDCardDirGetDirectoryName
	SDCardDirGetFilename
	SDCardDirGetName
	SDCardDirGetPath
	SDCardDirMakeDirectory
	SDCardDirMakeDirectoryWithDir
	SDCardDirOpen
	SDCardDirOpenWithPath
	SDCardDirRemoveDirectory
	SDCardDirRemoveDirectoryRecursive
	SDCardDirRemoveDirectoryRecursiveWithDir
	SDCardDirRemoveDirectoryWithDir
	SDCardEntryStatusDestroy
	SDCardExists
	SDCardFileClose
	SDCardFileCopy
	SDCardFileFlush
	SDCardFileGetPostion
	SDCardFileGetSize
	SDCardFileOpen
	SDCardFileOpenWithDir
	SDCardFilePeek
	SDCardFileRead
	SDCardFileRemove
	SDCardFileRemoveWithDir
	SDCardFileRename
	SDCardFileSetPosition
	SDCardFileWrite
	SDCardIsMounted
	SDCardLs
	SDCardLsWithDir
	SDCardMount
	SDCardRemoveAllFromDirectory
	SDCardRemoveAllFromDirectoryWithDir
	SDCardUnmount



	Index

	07_ElfLoader
	1 File Index
	1.1 File List

	2 File Documentation
	2.1 ElfLoader.h File Reference
	2.1.1 Detailed Description
	2.1.2 Function Documentation
	2.1.2.1 LoadElf(const char elfBinaryName)



	Index

	08_FlashIO
	Data Structure Index
	Data Structures

	File Index
	File List

	Data Structure Documentation
	FlashFile Struct Reference
	Detailed Description


	File Documentation
	FlashIO.h File Reference
	Detailed Description
	Enumeration Type Documentation
	FlashFileError
	FlashFileMode

	Function Documentation
	FlashFileAvailableMemory
	FlashFileClose
	FlashFileExists
	FlashFileGetAvailableSpace
	FlashFileGetDeviceID
	FlashFileGetMaxSize
	FlashFileGetPosition
	FlashFileGetSize
	FlashFileOpen
	FlashFilePeek
	FlashFileRead
	FlashFileRemove
	FlashFileRename
	FlashFileSetPosition
	FlashFileWrite



	Index

	09_Audio
	File Index
	File List

	File Documentation
	/Developer/projects/EoT/WorkPackage_3/myriad/apps/audio/leon/Audio.h File Reference
	Function Documentation
	AudioGetDuration
	AudioGetPosition
	AudioGetVolume
	AudioIsInPlaybackMode
	AudioIsInRecordMode
	AudioIsMuted
	AudioIsPaused
	AudioIsSeekable
	AudioIsStopped
	AudioPause
	AudioPlay
	AudioRecord
	AudioResume
	AudioSetMute
	AudioSetPosition
	AudioSetVolume
	AudioStop



	Index

	10_HistogramMatching
	11_Rotation-invariant_faceDetector
	12_MotorControl
	README
	Module Index
	Modules

	File Index
	File List

	Module Documentation
	Group title
	Detailed Description
	Function Documentation
	Cherokey4WDBackward
	Cherokey4WDForward
	Cherokey4WDSetDirectionSpeed
	Cherokey4WDSetup
	Cherokey4WDStop
	Cherokey4WDTurnLeft
	Cherokey4WDTurnRight


	Cherokey4WD from Myriad

	File Documentation
	Cherokey4WD.h File Reference
	Detailed Description

	Cherokey4WDArduino.c File Reference
	Detailed Description

	Cherokey4WDArduino.h File Reference
	Detailed Description

	Cherokey4WDArduinoTypes.h File Reference
	Detailed Description

	Cherokey4WDBoards.h File Reference
	Detailed Description

	Cherokey4WDMyriad.h File Reference
	Detailed Description

	Cherokey4WDRaspberryPi.h File Reference
	Detailed Description


	Index





