
Horizon 2020 PROGRAMME ICT-01-2014: Smart Cyber-Physical Systems

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No 643924

D3.2

Android middleware API

reference documentation

Copyright © 2016 The EoT Consortium

The opinions of the authors expressed in this document do not necessarily reflect

the official opinion of EOT partners or of the European Commission.

Ref. Ares(2016)531870 - 01/02/2016

1 DOCUMENT INFORMATION

Deliverable Number D3.2

Deliverable Name
Android middleware API reference documentation

Authors Ruben Reiser (DFKI), Stephan Krauß (DFKI)

Responsible Author

Ruben Reiser (DFKI)

e-mail: Ruben.Reiser@dfki.de

phone: +49 361 205 75 3620

Keywords MQTT, broker, API, Java

WP WP3

Nature R

Dissemination Level PU

Planned Date 31.01.2016

Final Version Date 1.02.2016

Reviewed by
Alain Pagani (DFKI), O. Deniz (UCLM), E. Roche

(THALES)

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 3 of 28 21/01/16

2 DOCUMENT HISTORY

Person Date Comment Version

Stephan Krauß 21.01.2016 Initial version 0.1

Ruben Reiser 27.01.2016 Completed the UI documentation 0.2

Oscar Deniz 27.01.2016 Review 0.3

Elodie Roche 1.2.2016 Review 0.4

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 4 of 28 21/01/16

3 ABSTRACT
The Eyes of Things (EoT) project envisages a computer vision platform that can

be used both standalone and embedded into more complex artefacts, particularly

for wearable applications, robotics, home products, surveillance etc. The core

hardware will be based on a number of technologies and components that have
been designed for maximum performance of the always-demanding vision

applications while keeping the lowest energy consumption.

An important functionality is to be able to communicate with other devices that

we use every day. In EoT, a middleware is developed to allow configuration and
basic control of the device from an external computer like a desktop/laptop PC or

a tablet/smartphone. The wireless communication on which this middleware is

based is additional to the existing wired debug capability of the Myriad SoC.

Apart from low-power hardware components, an efficient wireless communication
protocol is necessary. Text-oriented protocols like HTTP are not appropriate in

this context. Instead, the lightweight publish/subscribe message-based MQTT

protocol was selected. With MQTT the typical scenario is that of a device that

sends/receives messages, the messages being forwarded by a cloud-based

message broker. In the EoT project we propose a novel approach in which each
EoT device acts as an MQTT broker instead of the typical cloud-based

architecture. This eliminates the need for an external Internet server, which not

only makes the whole deployment more affordable and simpler but also more

secure by default.

This document describes the Android app implementing the EoT middleware API.

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 5 of 28 21/01/16

4 TABLE OF CONTENTS

1 Document Information ... 2
2 Document History .. 3
3 Abstract ... 4
4 Table of Contents .. 5
5 EoT Middleware ... 6
6 EoT Configuration and Control App for Android .. 7

6.1 Paho Java Client .. 7
6.2 API Specification .. 8
6.3 User Interface/Use of the Application .. 16
6.4 Problems Found/Known Issues ... 22
6.5 Open Issues .. 22

7 Code ... 23
8 Conclusion .. 24
9 References ... 25
10 Glossary ... 26

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 6 of 28 21/01/16

5 EOT MIDDLEWARE

The EoT middleware provides functionality for communication, control and

configuration of EoT devices. In particular this functionality is implemented by

Pulga, a tiny MQTT broker for EoT devices. A detailed description is available in
the desktop middleware API reference documentation (D3.1). The Android client

described in this document is communicating with the EoT device through this

broker and implements the same Java API as the desktop client application.

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 7 of 28 21/01/16

6 EOT CONFIGURATION AND CONTROL APP FOR
ANDROID

This section describes the counterpart of Pulga for mobile devices running

Android. An MQTT [1][2] client can act as a publisher, a subscriber or both. Due

to the small resources needed by the MQTT protocol, an MQTT client may run in

any device from a micro controller up to a server. Basically any device that has a

TCP/IP stack can use MQTT over it through:

 A plain TCP socket

 A secure SSL/TLS socket

The MQTT application only requires an MQTT library that connects the client with

the broker through a network connection in order to send and receive small
messages. There are many open-source MQTT client libraries available for a

variety of programming languages such as Java, JavaScript, C, C++, C#, Go,

iOS, .NET, Android, or Arduino.

The EoT Android MQTT client has been developed in Java using the Paho Java
Client library [3]. The desktop and Android apps are both written in Java and

share the same code basis.

6.1 Paho Java Client

The Paho Java Client [3] is an MQTT client library written in Java for developing
applications that runs on the Java Virtual Machine, JVM. Moreover, it can be used

under Android through the Paho Android Service.

Paho provides two APIs: MqttAsyncClient and MqttClient.

 MqttAsyncClient provides a fully asynchronous API where completion of

activities is notified via registered callbacks.

 MqttClient is a lightweight client that blocks the application until an

operation is complete. This class implements the blocking IMqttClient

client interface.

The EoT MQTT application is divided into two packages: the

“de.dfki.av.eotcontrolapp” and the “de.dfki.av.eotcontrolapp.ui”. The first one

contains classes that define the graphical user interface and user interaction. The

second one contains classes that define the application logic. The “MQTT_Client”

class manages the Paho client and provides all the functionalities needed.

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 8 of 28 21/01/16

6.2 API Specification

Class EoT_MQTT_Client

This class is an implementation of the EoT MQTT client.

1 Declaration

 public class EoT_MQTT_Client

 extends java.lang.Object

2 Fields

public final java.lang.String topicEOTConnectToAP

public final java.lang.String topicEOTContentSD

public final java.lang.String topicEOTCreateAP

public final java.lang.String topicEOTDeleteDirSD
public final java.lang.String topicEOTDeleteFileSD

public final java.lang.String topicEOTDisconnectFromAP

public final java.lang.String topicEOTDownloadFileSD

public final java.lang.String topicEOTGetDate

public final java.lang.String topicEOTListFilesSD
public final java.lang.String topicEOTMakeDirSD

public final java.lang.String topicEOTUpdateDate

public final java.lang.String topicEOTUploadElf

public final java.lang.String topicEOTUploadFileSD

public final java.lang.String topicSnapshot

3 Constructor summary

 EoT_MQTT_Client(String,int) Gets an instance of EoT_MQTT_Client

4 Method summary

 askSnapshot()

Sends a message in the topicSnapshot topic to get the image from the

broker

 connect()
Connects the client to the MQTT server

 connectionLost(Throwable)

 connectToAP(String, String, String)

Connects the EoT device to an external AP

 createAP(String, String, String, String)
Creates a new AP configuration profile

 createFolder(String)

Makes a new folder in the SD card

 deliveryComplete(IMqttDeliveryToken)

 disconnect()
Disconnects the client

 downloadFile(String, String)

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 9 of 28 21/01/16

Downloads a file from the SD card
 getDate()

Gets the current EoT device time/date

 getFileSystemStructure(String)

Gets the paths of the SD card content

 isConnected()
Checks if the client is connected

 messageArrived(String, MqttMessage)

 publish(String, int, byte[])

Publishes / sends a message to an MQTT server

 removeAll(String)
Removes a folder and its content recursively

 removeContent(String)

Removes the content of a folder (or the SD card if /mnt/sdcard is used)

 removeFile(String)

Removes a file from the SD card
 resetAPConfig()

Resets the AP configuration to the default profile

 setMainFrame(EoT_MainFrame)

Sets the main frame where results are displayed

 subscribe(String, int)

Subscribes the client to a topic on an MQTT server
 unsubscribe(String)

Unsubscribes the client from a topic

 updateDate(String, String, String, String, String, String)

Changes the EoT device time/date

 uploadFile(String, String)
Sends a file to the SD card

6 Constructor

 public EoT_MQTT_Client(java.lang.String brokerip , int brokerport)

– Description

Gets an instance of EoT_MQTT_Client

– Parameters

i. brokerip – IP where the broker is running
ii. brokerport – port used by the broker

7 Methods

• askSnapshot

 public javax.swing.ImageIcon askSnapshot() throws MqttException

– Description

Sends a message in the topicSnapshot topic to get the image from
the broker

– Throws

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 10 of 28 21/01/16

* MqttException
• connect

 public void connect () throws MqttException

– Description
 Connects the client to the MQTT server

– Throws

 * MqttException

• connectionLost

– Parameters

* cause

– See also

public void connectionLost (java.lang.Throwable cause)

* MqttCallback#connectionLost(Throwable)

• connectToAP

 public void connectToAP(java.lang.String SSID, java.lang.String security,

java.lang.String pass) throws MqttException

– Description

Connects the EoT device to an external AP

– Parameters

* SSID

* security

* pass

– Throws

* MqttException

• createAP

 public void createAP(java.lang.String SSID, java.lang.String security,

java.lang.String pass, java.lang.String channel) throws MqttException

– Description

Creates a new AP configuration profile

– Parameters

* SSID

* security

* pass
* channel

– Throws

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 11 of 28 21/01/16

* MqttException
• createFolder

 public int createFolder(java.lang.String path) throws MqttException

– Description
Makes a new folder in the SD card

– Parameters

* path – Path of the new folder

– Returns – 0 if the operation was successfully completed

• deliveryComplete

 public void deliveryComplete (IMqttDeliveryToken token)

– Parameters

* token

– See also

* MqttCallback#deliveryComplete(IMqttDeliveryToken)

• disconnect

 public void disconnect () throws MqttException

– Description

Disconnects the client

– Throws

* MqttException

• downloadFile

 public void downloadFile(java.lang.String srcDir, java.lang.String dstDir)

throws java.lang.Exception

– Description

Downloads a file from the SD card

– Parameters

* srcDir – SD card path of the file
* dstDir – Path where the file should be store

– Throws

* java.lang.Exception

• getDate

public java.util.Calendar getDate() throws MqttException

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 12 of 28 21/01/16

– Description

Gets the current EoT device time/date

– Returns

Calendar. The device current time/date

– Throws

* MqttException

• getFileSystemStructure

 public java.lang.String[] getFileSystemStructure(java.lang.String path)

throws MqttException

– Description
Gets the paths of the SD card content

– Returns

A String[] with all the file and folder paths

• isConnected

 public boolean isConnected ()

– Description

Checks if the client is connected

– Returns

true if the client is connected

• messageArrived

 public void messageArrived(java.lang.String topic, MqttMessage

messageArrived) throws java . lang . Exception

– Parameters

* topic
* messageArrived

– Throws

* java.lang.Exception

– See also

* MqttCallback#messageArrived(String, MqttMessage)

• publish

 public void publish(java.lang.String topicName, int qos, byte [] payload)

throws MqttException

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 13 of 28 21/01/16

– Description
Publishes / sends a message to an MQTT server

– Parameters

* topicName – the name of the topic to publish to

* qos – the quality of service to deliver the message at (0,1,2) (0 in
this case)

* payload – the set of bytes to send to the MQTT server

– Throws

* MqttException

• removeAll

 public int removeAll(java.lang.String path) throws MqttException

– Description

Removes a folder and its content recursively

– Parameters

* path – Path of the folder

– Returns

0 if the operation was successfully completed

• removeContent

 public int removeContent(java.lang.String path) throws

MqttException

– Description

Removes the content of a folder (or the SD card if /mnt/sdcard is
used)

– Parameters

* path – Path of the folder

– Returns – 0 if the operation was successfully completed

• removeFile

 public int removeFile(java.lang.String path) throws

MqttException

– Description

Removes a file from the SD card

– Parameters
* path – Path of the file to be removed

– Returns

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 14 of 28 21/01/16

0 if the operation was successfully completed

• resetAPConfig

 public void resetAPConfig () throws MqttException

– Description

Resets the AP con.guration to the default profile

– Throws

* MqttException

• setMainFrame

 public void setMainFrame(EoT_MainFrame frame)

– Description

Sets the main frame where results are displayed

– Parameters

* frame

• subscribe

 public void subscribe(java.lang.String topicName, int qos) throws

MqttException

– Description

Subscribes the client to a topic on an MQTT server

– Parameters

* topicName – to subscribe to (can be wild carded)
* qos – the maximum quality of service to receive messages at for

this subscription

– Throws

* MqttException

• unsubscribe

 public void unsubscribe(java.lang.String topicName) throws

MqttException

– Description

Unsubscribes the client from a topic

– Parameters

* topicName

– Throws

* MqttException

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 15 of 28 21/01/16

• updateDate

 public int updateDate(java.lang.String year, java.lang.String month,

java.lang.String day, java.lang.String hour, java.lang.String mins,

java.lang.String secs) throws MqttException

– Description

Changes the EoT device time/date

– Parameters
* year

* month

* day

* hour

* mins
* secs

– Throws

* MqttException

• uploadFile

 public int uploadFile(java.lang.String srcDir, java.lang.String dstName)

throws java.lang.Exception

– Description
Sends a file to the SD card

– Parameters

* srcDir – Path of the file

* dstName – SD card path where the file should be store

– Returns

0 if all is OK

– Throws

* java.lang.Exception

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 16 of 28 21/01/16

6.3 User Interface/Use of the Application

The application is divided into seven panels: Login, MQTT Client, WiFi, Time &

Date, App, SD Card and Camera.

Before connecting the EoT Control Mode Android application to the EoT device

the mobile device should be connected to the EoT device AP.

Once the mobile device is connected to the EoT device AP, the MQTT client can
be connected to the Pulga broker using the correct IP address and port.

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 17 of 28 21/01/16

After that, it is possible to use the application as a common MQTT client,
performing topic subscriptions and publishing messages to topics.

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 18 of 28 21/01/16

In the WiFi panel there are options that allow the user to configure WiFi. The EoT
device WiFi configuration includes options to:

 create an AP with new parameters,

 connect the device with an existing AP and

 reset the device AP settings to the default profile.

If the device's WiFi configuration is changed, the user needs to connect the

mobile device to the new AP or the same wireless network the EoT device is

connected to. Then, the client-broker connection is re-established.

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 19 of 28 21/01/16

In order to set the current time values in the EoT device it is possible to use the
Date & Time settings provided in the Android application. This allows the user to

get the current time and date of the mobile device and set them in the EoT

device. In addition, it is possible to check the current time of the EoT device.

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 20 of 28 21/01/16

In the App panel the user can upload an EoT application to the EoT device.

The process consists of two steps. First the user selects an EoT application.

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 21 of 28 21/01/16

Then the user hits the “upload application” button to initiate the upload process.

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 22 of 28 21/01/16

Finally, the SD card management options are divided into three parts. The first
part shows the directory tree of the SD card.

Files can be downloaded from SD card to the mobile device in the second tab.

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 23 of 28 21/01/16

In the third tab the user can upload files to the SD card of the EoT device.

Note that when the EoT device is in AP mode (by default) only one client can be

connected to it. This is considered a desirable feature in terms of security.

In the camera panel the user can request a snapshot from the EoT device’s

camera.

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 24 of 28 21/01/16

6.4 Open Issues

Two functionalities are implemented in the described EoT configuration and

control app for Android but not in Pulga. In particular:

 The snapshot retrieval needs to be implemented when the new camera

becomes ready.

 The functionality related to the flash needs to be implemented when the

conflicts between the WiFi chip and the flash memory are resolved in the

new version of the hardware.

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 25 of 28 21/01/16

7 CODE

The code of the EoT project can be found in the following GitLab repository:

https://gitlab.com/espiaran/EoT

The Pulga code can be found in the myriad applications directory of the WP3:

WorkPackage_3/myriad/apps/pulga_control_app

Pulga depends on Crypto, SDCardIO, WifiFunctions, and TimeFunctions modules.

These modules can be found under the WorkPackage_3/myriad/libs folder.

The Java Control Mode Android application is stored in the following directory:

WorkPackage_3/mobile/android/apps/EoT_control_app

This app needs the Paho library which is downloaded automatically by gradle

when building the app in Android Studio.

Please note that the Android App requires Android version 5 (Lollipop) or later.

https://gitlab.com/espiaran/EoT

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 26 of 28 21/01/16

8 CONCLUSION

EoT focuses on developing an open platform for mobile embedded computer

vision. The building elements have been all optimized for size and cost.

Particularly, the device optimizes the processing power vs energy consumption
ratio. Apart from hardware and architectural elements, software and protocols

used have been optimized as well. The publish/subscribe MQTT protocol has been

selected early on because of its low-power profile. While typical scenarios involve

(mobile) clients sending and receiving messages to/from a cloud-based broker, a

novel architecture is proposed in which each EoT device can act as a broker
itself. This provides a minimal way of communication that does not require any

cloud-based broker. This way no data is initially sent through the Internet which

is also an advantage in terms of security. This basic form of communication can

be in turn used to establish additional modes of communication should the

application require it. It can, for example, be used to configure the device and
the embedded application to run on it. This includes setting up a connection to

an existing WiFi network.

The proposed embedded MQTT broker, Pulga, provides the functionality to install

and configure applications in the EoT device using a desktop computer or a
mobile device with any MQTT client. It includes all main functionalities of a

classic MQTT broker as well as the new functionality required for EoT. This new

functionality is available through Pulga’s Java API. The implementation of the

client side of this API for Android devices as well as the usage of the Android app

has been described in this document.

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 27 of 28 21/01/16

9 REFERENCES

[1]. Banks, A., & Gupta, R. (2014). MQTT Version 3.1. 1. OASIS Standard.

https://www.oasis-open.org/standards. Last accessed: 12th of January

2016.
[2]. MQTT: a machine-to-machine (M2M)/Internet of Things connectivity

protocol. http://mqtt.org. Last accessed: 12th of January 2016.

[3]. http://eclipse.org/paho . Last accessed: 12th of January 2016.

https://www.oasis-open.org/standards
http://mqtt.org/
http://eclipse.org/paho

D3.2 Android middleware API
reference documentation

H2020-643924-EoT

Page 28 of 28 21/01/16

10 GLOSSARY

EoT Eyes of Things

SoC System on a Chip

HTTP Hypertext Transfer Protocol

MQTT Message Query Telemetry Transport

API Application Programming Interface

IoT Internet of Things

TCP/IP Transmission Control Protocol / Internet Protocol

PC Personal Computer

SSID Service Set Identifier

OASIS Organization for the Advancement of Structured Information
Standards

M2M Machine to Machine

QoS Quality of Service

SD Secure Digital

AP Access Point

SSL/TLS Secure Sockets Layer / Transport Layer Security

- End of document -

	1 Document Information
	2 Document History
	3 Abstract
	4 Table of Contents
	5 EoT Middleware
	6 EoT Configuration and Control App for Android
	6.1 Paho Java Client
	6.2 API Specification
	6.3 User Interface/Use of the Application
	6.4 Open Issues

	7 Code
	8 Conclusion
	9 References
	10 Glossary

