
Horizon 2020 PROGRAMME ICT-01-2014: Smart Cyber-Physical Systems

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No 643924

D3.1

Desktop middleware API
reference documentation

Copyright © 2015 The EoT Consortium

The opinions of the authors expressed in this document do not necessarily reflect
the official opinion of EOT partners or of the European Commission.

1. DOCUMENT INFORMATION

Deliverable Number D3.1

Deliverable Name Desktop middleware API reference documentation

Authors O. Deniz(UCLM), J.L. Espinosa-Aranda(UCLM), N.
Vallez(UCLM)

Responsible Author
O. Deniz (UCLM)
e-mail: Oscar.Deniz@uclm.es
phone: +34 926 29 53 00 ext: 6286

Keywords MQTT, broker, API, Java

WP WP3

Nature R

Dissemination Level PU

Planned Date 31.01.2016

Final Version Date 28.01.2016

Reviewed by O. Deniz (UCLM), A. Pagani (DFKI)

Verified by C. Fedorczak (TCS)

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 3 of 58 20/01/16

2. DOCUMENT HISTORY

Person Date Comment Version

J.L. Espinosa-
Aranda 08.01.2016 Initial version 0.1

J.L. Espinosa-
Aranda 19.01.2016 Sections 6, 7 and 10 0.2

N. Vallez 19.01.2016 Section 8 0.3

J.L Espinosa-
Aranda and N.
Vallez

20.01.2016 Sections 5 and 9 0.4

C. Fedorczak 28/01/2016 Verification

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 4 of 58 20/01/16

3. ABSTRACT

The Eyes of Things (EoT) project envisages a computer vision platform that can
be used both standalone and embedded into more complex artefacts, particularly
for wearable applications, robotics, home products, surveillance etc. The core
hardware will be based on a number of technologies and components that have
been designed for maximum performance of the always-demanding vision
applications while keeping the lowest energy consumption.

An important functionality is to be able to communicate with other devices that
we use every day. In EoT, a middleware is developed to allow configuration and
basic control of the device from an external computer like a desktop/laptop PC or
a tablet/smartphone. The wireless communication on which this middleware is
based is additional to the existing wired debug capability of the Myriad SoC.

Apart from low-power hardware components, an efficient wireless communication
protocol is necessary. Text-oriented protocols like HTTP are not appropriate in
this context. Instead, the lightweight publish/subscribe message-based MQTT
protocol was selected. With MQTT, the typical scenario is that of a device that
sends/receives messages, the messages being forwarded by a cloud-based
message broker. In the EoT project we propose a novel approach in which each
EoT device acts as an MQTT broker instead of the typical cloud-based
architecture. This eliminates the need for an external Internet server, which not
only makes the whole deployment more affordable and simpler but also more
secure by default.

This document describes the desktop middleware API implemented, which
includes:

1. The WiFi module used.
2. Bases of the MQTT protocol and the approach followed.
3. Pulga, a tiny open-source MQTT broker for flexible and secure IoT

deployments.
4. The MQTT client application developed in Java for controlling the EoT

device.

These elements work together to give the EoT a minimal control mode, allowing
external access from a desktop/laptop computer.

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 5 of 58 20/01/16

4. TABLE OF CONTENTS

1. Document Information .. 2
2. Document History .. 3
3. Abstract .. 4
4. Table of Contents ... 5
5. WiFi module .. 6
6. MQTT Protocol and Approach ... 7

6.1. Approach ... 8
7. Pulga, a tiny open-source MQTT broker for flexible and secure IoT
deployments .. 12

7.1. API (MQTT Restricted Topics) .. 14
7.2. Problems Found/Known Issues .. 22
7.3. Test Cases ... 22

7.3.1. Tests implemented .. 22

7.3.2. Expected output of the tests... 23

7.4. Using the Application/Screenshots ... 25
7.5. To Do .. 32

8. MQTT Client Application Developed in Java (JAVA API) 34
8.1. Paho Java Client.. 34
8.2. API Specification ... 35
8.3. User Interface/Use of the Application ... 43
8.1. Problems Found/Known Issues .. 49
8.2. To Do .. 49

9. Code .. 50
10. Conclusion .. 51
11. Annex: Python tests ... 52
12. References .. 57
13. Glossary ... 58

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 6 of 58 20/01/16

5. WIFI MODULE

The EoT device configuration (‘control mode’) is performed through a wireless
connection. The device incorporates a WiFi module (CC3100MOD from Texas
Instruments [1]). Since the CC3100 module allows the creation of an ad-hoc
WiFi, the connection with the external configuration device can be done even
without an existing WiFi infrastructure. Therefore, a computer, a mobile phone,
or a tablet can establish a connection with the EoT device.

The WifiFunctions module has been developed over the CC3100 driver (provided
by Movidius) in order to provide a convenient wrapper of common WiFi functions.
This module provides a layer of functions for creating an ad-hoc WiFi,
establishing a connection with another device, sending/receiving data and closing
a connection. In addition, functions for managing WiFi connection profiles have
been also included. The SSID and the password of the ad-hoc WiFi or the local
WiFi infrastructure can be stored in the flash memory of the CC3100 as a
connection profile.

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 7 of 58 20/01/16

6. MQTT PROTOCOL AND APPROACH

In the last few years cognitive applications and services have been acknowledged
as key drivers of innovation and demand. The particular case of computer vision
represents a fundamental challenge. While image analysis and inference requires
massive computing power, the sheer volume of visual information that can be
potentially generated by mobile devices cannot be transferred to the cloud for
processing. This problem becomes even worse when we consider emerging
sensing technologies like 3D and hyperspectral cameras. One of the most recent
attempts at alleviating this problem is the cloudlets approach [2], which
essentially proposes offloading computation to local computers that are within
one wireless hop of the mobile device. These computers would play a role similar
to those in data centers. In particular, streams of image data would be processed
and analyzed in those computers, providing relatively fast responses to the
mobile device.

While the cloudlets approach is certainly an efficient way to manage increasing
demands of computing power, it falls short in a number of aspects. First,
streaming of raw sensor data out of the mobile device is still being assumed.
Power efficiency then becomes a major issue, since wirelessly transmitting data
for remote computation can cost up to one million times more energy per
operation compared to processing locally in a device. Second, it also assumes
that the end-user will have to purchase and manage the local computer. Another
scenario is when this computer is part of some service provided in the premises
(say, within a Hospital), but then the problem becomes one of security, for raw
sensor data would be streamed to an externally-managed device. The philosophy
behind EoT is precisely focused on maximizing the mobile device's processing
power vs energy consumption ratio as well as ensuring secure use by individual
users.

Within the overall aim of optimizing energy consumption, an important
component of the EoT device is the low-power WiFi chip. The specific model
selected for EoT is the CC3100 from Texas Instruments, which provides basic
TCP/IP communication. A firmware in the device allows sending/receiving of
images, metadata and control/config commands. Apart from hardware, an
efficient communication layer protocol is necessary. This protocol shall be used
for sending the results of computer vision processing, including text, images or
other types of data. HTTP is widely used, but its text-oriented nature is not
appropriate for resource-limited devices. Instead, the MQTT protocol was
selected early on [3]. MQTT is a lightweight publish/subscribe protocol designed
for use over TCP/IP networks which provides an efficient 1-to-n communication
mechanism. MQTT has been designed for low bandwidth and unreliable or
intermittent connections, thus being a strong candidate in the Internet of Things
scenario. MQTT-enabled devices can open a connection and keep it open using
very little power.

The typical scenario is that of an embedded client which connects to an MQTT
server (message broker) in the cloud [4] (Figure 1).

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 8 of 58 20/01/16

Fig. 1: Typical IoT MQTT communication model

Again, in this scenario the brokering service has to be purchased by the user, or
else it has to be installed on a locally-managed server. In the EoT project a novel
architecture in which each EoT device can act as a broker is proposed. This way
no external server will be required, and data will not be initially sent through the
Internet. In fact, the configuration device (another device as smartphone, tablet
or PC) and the EoT node do not need to be in a WiFi network infrastructure, since
an ad hoc network is created by the EoT device by default. This allows setting up
applications in which only the EoT and another device are involved. That is in fact
the default mode upon boot, with the additional possibility of connecting to an
existing WiFi network. As a result, depending on the final application an EoT
device can be configured to work at 3 levels: 1) Single device mode (with the
only requirement of a configuration device, typically a smartphone, tablet or
laptop, connecting to the EoT-generated ad-hoc WiFi), 2) Home, i.e. EoT device
connecting to a local WiFi infrastructure, and 3) EoT device connecting to the
cloud (through the WiFi infrastructure).

6.1. Approach

By default, EoT devices create an ad-hoc WiFi. This is necessary to allow
connection to the configuration device even without WiFi infrastructure. Note also
that the EoT device cannot by itself connect to an existing WiFi since it does not
have means for specifying SSIDs or network passwords. Each EoT device creates
a WiFi with univocal SSID and password. The configuration device will have to
enter those to establish communication with it. This method allows a
configuration device to connect and configure devices one by one. During
configuration, an EoT device can be also made to connect to a given existing WiFi
(either from other EoT or from infrastructure). This allows EoTs to connect to
each other (with or without infrastructure) and also allows EoTs to connect to the

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 9 of 58 20/01/16

Internet. Low-level security is handled by an encryption protocol used in the ad-
hoc WiFi (typically WPA). Horizontal arrows in Figure 2 represent data
communication to/from EoT devices to/from a) Desktop computers and mobile
devices such as smartphones and tablets and b) Cloud services.

Fig. 2: User view

All Internet of Things implementations must consider low-powered devices which
need to function for months or years without getting any power recharge. This
makes the as-is use of some of the existing Internet protocols to be sub-optimal.
Some protocols that are heavily used in Internet add substantial overheads and a
large number of device-to-cloud network technologies and protocols are being
developed by researchers and start-ups. This has led to an enormous
fragmentation, described in [5].

Currently efficient options exist for low-power connectivity such as Zigbee and
the more recent Bluetooth LE (low-energy). The proposed approach will use
TCP/IP over WiFi, since low-power features present in the latest WiFi modules
prepared for the Internet of Things will be leveraged, having low-power standby
modes and short wake-up times.

As mentioned above, the proposed EoT device approach uses the TCP/IP stack
and the MQTT protocol [3] for communicating with other devices. MQTT-enabled
devices can open a connection, keep it open using very little power and receive
events or commands with as little as 2 bytes of overhead. While HTTPS is slightly
more efficient in terms of establishing connection, MQTT is much more efficient
during transmission.

MQTT v3.1.1 has become recently an OASIS Standard [6]. One of the key
aspects of MQTT is an extremely efficient and scalable data distribution model.
While HTTP is point-to-point, MQTT can distribute 1-1 or 1-to-n via the
publish/subscribe mechanism. For these reasons MQTT is being increasingly used
in mobile Apps (it is notably used by Facebook Messenger) instead of existing
unreliable push notification mechanisms, see Figure 3. Devices can publish data
on a “topic”. Other devices can subscribe to a given topic and they will receive
the corresponding published data. The broker is typically hosted on an enterprise
server.

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 10 of 58 20/01/16

Fig. 3: MQTT publish/subscribe

MQTT is at the time of writing one of the strongest contenders in the IoT and
M2M “protocol wars”. MQTT has been selected in the EoT project for two
reasons: a) it is a low-power protocol and b) it provides an efficient 1-to-n
communication mechanism. 1-to-n communication is fundamental since it allows
multiple viewers, multiple (additional) processors and cooperation between
sensors. The typical MQTT scenario would need a broker in the cloud.
Alternatively, the smartphone/tablet/PC used for configuration could be used as
a broker, but this would mean that such device (typically our personal
smartphone or tablet) would have to be continuously functioning as a gateway.
Thus, an architecture in which each EoT device can act as a broker is proposed.
This way other EoT devices can subscribe to a given EoT. The configuration
device can subscribe to the device and receive data too, although it can also
'publish' configuration commands for the device. In this architecture each EoT
device can effectively act as both client and server, and the configuration device
will only be woken up by the appropriate EoT (see Figure 4).

Fig. 4: Proposed EoT MQTT architecture

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 11 of 58 20/01/16

Apart from efficient peer-to-peer cooperation, this model allows building
hierarchical processing networks. An example is extracting salient features on a
first level and recognition on another. The first level of EoTs would compute
salient features. The second level would be subscribed to their results and would
perform object recognition. Finally, the configuration device would be subscribed
to second-tier devices to get only the final result. Another possible hierarchy is
object detection, followed by object recognition and object tracking. Finally,
neural network-based techniques could be staged using multiple EoT devices,
both in parallel and sequentially. Note also that the huge fan-out capabilities of
MQTT also make it ideal for massively parallel processing.

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 12 of 58 20/01/16

7. PULGA, A TINY OPEN-SOURCE MQTT BROKER FOR
FLEXIBLE AND SECURE IOT DEPLOYMENTS

Pulga, which means flea in Spanish, is the proposed tiny MQTT broker
implementation for EoT devices. Its name derives from Mosquitto [7], which is a
widely-used Open Source MQTT v3.1 message broker written by Roger Light. As
opposed to Mosquitto, Pulga is a lightweight broker designed to be run in
embedded systems. While Mosquitto requires at least 3MB RAM, Pulga has been
tested using only 512KB and probably can still run using less memory. Figure 5
shows an example of the typical configuration that the proposed approach will
have.

Fig. 5: Pulga broker configuration

To develop Pulga it was necessary to start from the ground-up implementing
only the minimal parts of the protocol. It uses the MQTTPacket library of the
Eclipse Paho MQTT C/C++ client library for embedded platforms [8]. This library
contains the lowest level C library which supplies simple
serialization/deserialization routines depending on the type of message
sent/received.

In particular, Pulga has the following MQTT protocol functionality implemented:

1) Manage connection/disconnection of a client.
2) Publish message.
3) Multiple clients can connect to Pulga and subscribe/unsubscribe to topics.
4) Topics/subscriptions management. Currently Pulga does not consider

hierarchical topics (subtopics), only basic topics.
5) Keep alive functionality through the ping request.

With respect to other typical features of a MQTT broker as defined by the
protocol, there are some of them that are not implemented because of the main
focus of Pulga broker. More specifically Pulga does not manage retained
messages, the definition of a session as clean or durable, or the “last will” option,

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 13 of 58 20/01/16

which allows a client to send a message that it wishes the broker to forward
when it disconnects unexpectedly.

Moreover MQTT defines three levels of Quality of Service (QoS). The QoS defines
how hard the broker/client will try to ensure that a message is received. There
are three levels of QoS defined by the MQTT protocol, 0: The broker/client will
deliver the message once, with no confirmation, 1: The broker/client will deliver
the message at least once, with confirmation required, and 2: The broker/client
will deliver the message exactly once by using a four step handshake. The
current Quality of Service (QoS) implemented in Pulga is the QoS 0.

As used in EoT, Pulga includes other functionality that a typical MQTT broker
does not have. The most important is that it adds the possibility of defining
'restricted' topics. This option allows to include new uses for the MQTT broker.
When a Publish message is received, Pulga first detects if the topic is a
'restricted' one using a simple parser on the broker, changing the typical publish
behaviour as the programmer defines. This approach allows the user to have
additional functionality:

• Send/receive files. Considering that the MQTT protocol sends binary
messages (the text of an MQTT message is always serialized) it is possible
to use an MQTT message to send binary data without
serializing/deserializing it. This process would allow us to upload the
applications we want to run into the device or send the captured images in
the EoT device to a client that requests them.

• Configuration of the EoT device. By defining different configuration topics,
Pulga is able to manage the different EoT parameters and to configure the
WiFi connection of the device. A simple parser is used to manage the
messages published.

• Configuration of access to a WiFi infrastructure. The configuration device
can send the required connection data to the EoT device. This data can be
stored in the device and used by preloaded applications to connect to an
existing WiFi.

Concretely, the control mode, which will be activated through a dipswitch, will
receive and respond to this control commands:

a. Establish wireless communication.
b. Change from AP mode to Station Mode and connect to another existing

AP.
c. Upload and flash an application (a payload).
d. Upload data to SD card in EoT.
e. Run application (payload).
f. Download data from SD card in EoT.
g. Change network password.
h. Remove network password.
i. Request a camera snapshot.
j. Update Myriad’s clock/time with the client’s clock/time (clock/time is

strictly needed, for example to store timestamps on events).

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 14 of 58 20/01/16

It is worth noting that these commands depend on other modules which will be
described in Deliverable 3.3 Firmware documentation.

As a way to test communications, the interpreter will be on when in AP mode
(and off when in station mode), and flashing upon receiving every command. The
SD Card will be used to store application data (audio files, cascade classifier
data…), configuration parameters, snapshots, application results, etc.

Pulga will be always resident in the device Flash. The application to run will be
stored also in the Flash. If for some reason the payload does not work properly
then the device will have to be booted in Control mode to flash another payload.
If for some reason the module stops working then the device will have to be
connected to a PC (with the JTAG cable) and Pulga will have to be reflashed.

7.1. API (MQTT Restricted Topics)

When a message is received by Pulga in one these topics, the behavior of the
broker changes from a typical MQTT broker as explained in Table 1.

The client must subscribe to each reserved topic before sending the first
message. The unsubscribing is managed afterwards automatically by the broker
after finishing the command, so it is not necessary for the client to send the
unsubscribe command.

Some of the reserved topic must answer to the client if the operation has been
performed correctly in the same reserved topic. In case that an error occurs,
Pulga will send “-1” to the client. Otherwise, it will send “0”.

The package described corresponds to a packet of information with a maximum
size of 1024 bytes. This fact is because of the limitation imposed by the CC3100
WiFi device when receiving a message through sockets.

Basic
Description

Topic Publish Message Description

Upload file to
SD

EOTUploadFileSD NumberOfPackages PathToFile Parameters:
NumberOfPackages: Number of packages to be
sent.
PathToFile: Path to the file to be written.

Functionality:
The client application must send the first message
including the defined information. After that the
client must send the file divided in parts of
maximum 1024 bytes using publish messages with
the same topic (EOTUploadFile). The message for
each part of the file must be:

PartOfFIleXXXXXX

Where XXXXXX is the number of the package sent
using 6 digits (it must include zeros at the left).
The complete size of the message would be
1024+6 at maximum.

Answer to the client:
The EoT device must send a message to the client
in the same topic indicating if the file has been
uploaded correctly or an error.

Create
directory in
SD

EOTMakeDirSD PathToDir Parameters:
PathToDir: Path to the directory to be created.

Functionality:
Create the indicated directory in the SD card.

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 16 of 58 20/01/16

Answer to the client:
The EoT device must send a message to the client
in the same topic indicating that the directory has
been created in the SD card.

List files from
SD

EOTListFilesSD PathToDir Parameters:
PathToDir: Path to the directory to be listed.

Functionality:
Send a list with the name of the files on a folder of
the SD.

Answer to the client:
The EoT device must send a message to the client
in the same topic indicating the files of the device
SD.

Download file
from SD

EOTDownloadFileSD PathToFile Parameters:
PathToFile: Path to the file to be downloaded.

Functionality:
Send the indicated file to the client.

Answer to the client:
First the EoT device must send a message in the
same topic as follows:

NumberOfPackages

This message indicates the number of packages to
be received by the client. The size of each package
is at maximum 1024 bytes.

After that the EoT device must send
NumberOfPackages messages partitioning the file

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 17 of 58 20/01/16

using the same topic. The client should combine
these packages to obtain the complete file.

Delete
selected file
from SD

EOTDeleteFileSD PathToFile Parameters:
PathToFile: Path to the file to be deleted.

Functionality:
Delete the indicated file from the SD card.

Answer to the client:
The EoT device must send a message to the client
in the same topic indicating that the selected file of
the SD card has been removed or an error.

Delete
selected
directory from
SD

EOTDeleteDirSD PathToDir Parameters:
PathToDir: Path to the directory to be deleted.

Functionality:
Delete the indicated directory from the SD card.

Answer to the client:
The EoT device must send a message to the client
in the same topic indicating that the selected
directory of the SD card has been removed or an
error.

Delete all files
from SD

EOTDeleteContentSD PathToDir Parameters:
PathToDir: Path to the directory which contents
will be deleted.

Functionality:
Delete all the files inside the indicated directory.

Answer to the client:
The EoT device must send a message to the client
in the same topic indicating that the files of the SD

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 18 of 58 20/01/16

have been removed or an error.
Upload and
flash an
application
(ELF)

EOTUploadElf NumberOfPackages AppName Parameters:
NumberOfPackages: Number of packages to be
sent.
AppName: Name of the app to be written.

Functionality:
The client application must send the first message
including the defined information. After that the
client must send the ELF file divided in packages
using publish messages with the same topic
(EOTUploadElf). The message for each part of the
file must be:

PartOfFIleXXXXXX

Where XXXXXX is the number of the package sent
using 6 digits (it must include zeros at the left).
The complete size of the message would be
1024+6 at maximum.

Answer to the client:
The EoT device must send a message to the client
in the same topic indicating if the ELF has been
uploaded correctly or an error.

List ELF files EOTListElf - Parameters:
No parameters

Functionality:
Send to the client a list with the name of the ELF
files uploaded to the device.

Answer to the client:

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 19 of 58 20/01/16

The EoT device must send a message to the client
in the same topic indicating the ELF files of the
device.

Request a
camera
snapshot

EOTSnapshot - Parameters:
No parameters

Functionality:
Send to the client a snapshot taken by the camera
of the device.

Answer to the client:
First the EoT device must send a message in the
same topic as follows:

NumberOfPackages

This message indicates the number of packages to
be received by the client.

After that the EoT device must send
NumberOfPackages messages partitioning the
image using the same topic. The client should
combine these packages to obtain a complete
image.

Create access
point

EOTCreateAP Ssid Security [Pass] [Channel] Parameters:
Ssid: SSID of the access point to be created.
Security: Security of the access point. The values
of this parameter must be Open, WEP or WPA.
Pass: Password of the WiFi network if necessary
(only on WEP and WPA networks).
Channel: Channel in which the access point will be
emitting. If not defined, it will be selected among
the less congested channels with other access

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 20 of 58 20/01/16

points.

Functionality:
Create the indicated access point.

Answer to the client:
Since all the connections previously created are
reset, it is not possible to send an answer to the
client, which must be restarted.

Connect to
access point

EOTConnectToAP Ssid Security [Pass] Parameters:
Ssid: SSID of the network to be connected to.
Security: Security of the network. The values of
this parameter must be Open, WEP or WPA.
Pass: Password of the WiFi network if necessary
(only on WEP and WPA networks).

Functionality:
Connect to the indicated access point (if it exists).

Answer to the client:
Since all the connections previously created are
reset, it is not possible to send an answer to the
client, which must be restarted.

Reset WiFi
configuration

EOTDisconnectFromAP - Parameters:
No parameters

Functionality:
Reset the WiFi configuration and restart to default.

Answer to the client:
Since all the connections previously created are
reset, it is not possible to send an answer to the
client, which must be restarted.

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 21 of 58 20/01/16

Update date EOTUpdateDate Year Month Day Hour Min Sec Parameters:
Year: Year to be updated.
Month: Month to be updated.
Day: Day to be updated.
Hour: Hour to be updated.
Min: Minute to be updated.
Sec: Second to be updated.

Functionality:
Update the date and time of the device.

Answer to the client:
The EoT device must send a message to the client
in the same topic indicating that the date has been
updated correctly.

Get date EOTGetDate - Parameters:
No parameters.

Functionality:
Get the date of the device.

Answer to the client:
The EoT device must send a message to the client
in the same topic indicating the date of the device
in the following format:

Www Mmm dd hh:mm:ss yyyy

Where Www is the weekday, Mmm the month (in
letters), dd the day of the month, hh:mm:ss the
time, and yyyy the year.

Table 1: Pulga restricted topics

7.2. Problems Found/Known Issues

• There is a simple version of Pulga (only MQTT broker) which includes the

possibility of sending a snapshot from the camera installed on the initial
prototype of the EoT device board. This is not yet implemented in the last
version until the NanEye camera is included in the board.

• The CC3100 has a limitation of receiving a maximum of 1472 bytes in a

socket. Pulga splits every file/binary it needs to send. We selected a
maximum chunk size of 1024 bytes, including at the end 6 bytes which will
include the number of the package sent. This has been tested with files
and pictures of 4MB at the moment.

• Memory problems: in custom.ldscript, the parameter _RAM_SIZE_LOS

must be configured as the maximum size of a file expected to be received.
It can be improved in future versions of Pulga by saving the file not at the
end of reception, but when each part is received.

• Topic EOTUploadElf is not implemented because in the initial hardware

prototype there are known conflicts between the SPI of the WiFi chip and
the flash memory. Currently this topic works receiving the file and saving
it in a folder called Flash in the SD card.

7.3. Test Cases

Several tests have been implemented in Python to test Pulga
(desktop\unittest\test_pulga). The Python package dependences are:

Unittest, wifiUtils (the files are included), paho.mqtt.client, logging, os, filecmp,
datetime, dbus, time.

The steps for executing them are:

1) Run myriad/apps/pulga_control_app in the EoT device. It will create an AP
(SSID = Myriad2Wifi, password = visilabap, if the WifiFunctions library has
not been modified) and will start the MQTT broker.

2) When Pulga shows "Waiting" in the command line, run the test.py file. This
test will create a MQTT client which will connect to the generated AP and
will test several of the functionalities of Pulga.

See in the Annex some support info to get the Python test running.

7.3.1. Tests implemented

test00ConnectToBroker

The client tests if it is able to connect to and disconnect from the broker. It also
tests the connection of the client if it is already connected.

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 23 of 58 20/01/16

test01SubscribeUnsubscribe

The client tests the subscription and unsubscription from a topic.

test02UploadFile

The client tests the upload file feature.

test03DownloadFile

The client tests the download file feature

test04UploadDownloadFileAreEqual

The test compares the downloaded file with the uploaded file.

test05RequestSnapshot

The client requests a snapshot from Pulga.

test06UpdateDate

The client tests the update date functionality.

test07GetDate

The client tests the get date functionality.

test08EOTMakeDirSD

The test creates a dir “Test” in the SD card.

test09EOTListFilesSD

The client obtains the complete list of files contained in the SD card.

test10EOTDeleteFileSD

The test deletes the file uploaded previously to the SD card.

test11EOTDeleteDirSD

The test deletes the dir “Test” from the SD card.

test12UploadElf

The test uploads an Elf binary to the flash memory of the EoT device.

7.3.2. Expected output of the tests

The expected output of the tests must be similar to (currently test05 will fail,
because the snapshot feature is not implemented in this version):

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 24 of 58 20/01/16

test00ConnectToBroker (__main__.PulgaTests) ... Waiting for connection to
reach NM_ACTIVE_CONNECTION_STATE_ACTIVATED state ...
Connection established!
ok
test01SubscribeUnsubscribe (__main__.PulgaTests) ... Check if unsubscription
was successful
ok
test02UploadFile (__main__.PulgaTests) ... Uploading 000000 chunk
Uploading 000001 chunk
……
Uploading 000013 chunk
ok
test03DownloadFile (__main__.PulgaTests) ... Downloading chunk
Downloading chunk
……
Downloading chunk
ok
test04UploadDownloadFileAreEqual (__main__.PulgaTests) ... ok
test05RequestSnapshot (__main__.PulgaTests) ... FAIL
test06UpdateDate (__main__.PulgaTests) ... ok
test07GetDate (__main__.PulgaTests) ... ok
test08EOTMakeDirSD (__main__.PulgaTests) ... ok
test09EOTListFilesSD (__main__.PulgaTests) ... OpenCVTests;0;Thu Dec 3
12:04:36 2015
Thu Dec 3 12:04:36 2015
Thu Dec 3 12:04:36 2015

test.py;1;Fri Jan 1 00:00:18 1988
Fri Jan 1 00:00:18 1988
Fri Jan 1 00:00:18 1988
……
ok
test10EOTDeleteFileSD (__main__.PulgaTests) ... ok
test11EOTDeleteDirSD (__main__.PulgaTests) ... ok
test12UploadElf (__main__.PulgaTests) ... Uploading 000000 chunk
Uploading 000001 chunk
……
Uploading 000013 chunk
ok

==
====================
FAIL: test05RequestSnapshot (__main__.PulgaTests)
--
Traceback (most recent call last):
 File "test.py", line 178, in test05RequestSnapshot
 self.assertTrue(False, "Error on received message with size of snapshot")
AssertionError: Error on received message with size of snapshot

--
Ran 13 tests in 18.286s

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 25 of 58 20/01/16

7.4. Using the Application/Screenshots
Pulga starts:

Client connection:

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 26 of 58 20/01/16

List files when connecting the client:

Topic subscription:

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 27 of 58 20/01/16

Publish message:

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 28 of 58 20/01/16

Unsubscribe from topic:

Create Access Point:

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 29 of 58 20/01/16

Reset WiFi configuration to default:

Update date of EoT device:

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 30 of 58 20/01/16

Create folder:

Remove file from SD card:

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 31 of 58 20/01/16

Receive file and store it on SD card:

Send file from SD card to client:

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 32 of 58 20/01/16

Remove all content from SD card:

7.5. To Do

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 33 of 58 20/01/16

• Implement the snapshot retrieval capability when the new camera is

ready.

• Implement all the functionality of the flash when conflicts between the
WiFi chip and the flash memory are solved in the new hardware board.

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 34 of 58 20/01/16

8. MQTT CLIENT APPLICATION DEVELOPED IN JAVA
(JAVA API)

This section describes the counterpart of Pulga for a desktop/laptop computer.
An MQTT client can act as a publisher, a subscriber or both. Due to the small
resources needed by the MQTT protocol, an MQTT client may run in any device
from a micro controller up to a server. Basically any device that has a TCP/IP
stack can use MQTT over it using:

• A plain TCP socket
• A secure SSL/TLS socket

The MQTT application only requires an MQTT library that connects the client with
the broker through a network connection in order to send and receive small
messages. There are many open-source MQTT client libraries available for a
variety of programming languages such as Java, JavaScript, C, C++, C#, Go,
iOS, .NET, Android, or Arduino.

Here, the EoT Desktop MQTT client has been developed in Java using the Paho
Java Client library [7]. That way, the same code base can be used for both
desktop and Android applications.

8.1. Paho Java Client

Paho Java Client is an MQTT client library written in Java for developing
applications that runs on the Java Virtual Machine, JVM. Moreover, it can be used
under Android through the Paho Android Service.

Paho provides two APIs: MqttAsyncClient and MqttClient.

• MqttAsyncClient provides a fully asychronous API where completion of
activities is notified via registered callbacks.

• MqttClient is a lightweight client that blocks the application until an
operation is complete. This class implements the blocking IMqttClient
client interface.

The EoT MQTT application is divided into two clases: the EoT_MainFrame and the
EoT_MQTT_Client. The first one only contains the code of the graphical user
interface whereas the second one, the EoT_MQTT_Client manages the Paho client
and provides all the functionalities needed.

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 35 of 58 20/01/16

8.2. API Specification

Class EoT_MQTT_Client

The EoT_MQTT_Client.

1 Declaration

 public class EoT_MQTT_Client
 extends java.lang.Object

2 Fields

public final java.lang.String topicEOTConnectToAP
public final java.lang.String topicEOTContentSD
public final java.lang.String topicEOTCreateAP
public final java.lang.String topicEOTDeleteDirSD
public final java.lang.String topicEOTDeleteFileSD
public final java.lang.String topicEOTDisconnectFromAP
public final java.lang.String topicEOTDownloadFileSD
public final java.lang.String topicEOTGetDate
public final java.lang.String topicEOTListFilesSD
public final java.lang.String topicEOTMakeDirSD
public final java.lang.String topicEOTUpdateDate
public final java.lang.String topicEOTUploadElf
public final java.lang.String topicEOTUploadFileSD
public final java.lang.String topicSnapshot

3 Constructor summary

 EoT_MQTT_Client(String,int) Gets an instance of EoT_MQTT_Client

4 Method summary

• askSnapshot()
Sends a message in the topicSnapshot topic to get the image from the
broker

• connect()
Connects the client to the MQTT server

• connectionLost(Throwable)
• connectToAP(String, String, String)

Connects the EoT device to an external AP
• createAP(String, String, String, String)

Creates a new AP configuration profile
• createFolder(String)

Makes a new folder in the SD card
• deliveryComplete(IMqttDeliveryToken)
• disconnect()

Disconnects the client
• downloadFile(String, String)

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 36 of 58 20/01/16

Downloads a file from the SD card
• getDate()

Gets the current EoT device time/date
• getFileSystemStructure(String)

Gets the paths of the SD card content
• isConnected()

Checks if the client is connected
• messageArrived(String, MqttMessage)
• publish(String, int, byte[])

Publishes / sends a message to an MQTT server
• removeAll(String)

Removes a folder and its content recursively
• removeContent(String)

Removes the content of a folder (or the SD card if /mnt/sdcard is used)
• removeFile(String)

Removes a file from the SD card
• resetAPConfig()

Resets the AP configuration to the default profile
• setMainFrame(EoT_MainFrame)

Sets the main frame where results are displayed
• subscribe(String, int)

Subscribes the client to a topic on an MQTT server
• unsubscribe(String)

Unsubscribes the client from a topic
• updateDate(String, String, String, String, String, String)

Changes the EoT device time/date
• uploadFile(String, String)

Sends a file to the SD card

6 Constructor

 public EoT_MQTT_Client(java.lang.String brokerip , int brokerport)

– Description
Gets an instance of EoT_MQTT_Client

– Parameters

i. brokerip – IP where the broker is running
ii. brokerport – port used by the broker

7 Methods

• askSnapshot

 public javax.swing.ImageIcon askSnapshot() throws MqttException

– Description
Sends a message in the topicSnapshot topic to get the image from
the broker

– Throws

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 37 of 58 20/01/16

* MqttException
• connect

 public void connect () throws MqttException

– Description
 Connects the client to the MQTT server

– Throws
 * MqttException

• connectionLost

– Parameters

* cause

– See also
public void connectionLost (java.lang.Throwable cause)
* MqttCallback#connectionLost(Throwable)

• connectToAP

 public void connectToAP(java.lang.String SSID, java.lang.String security,
java.lang.String pass) throws MqttException

– Description
Connects the EoT device to an external AP

– Parameters
* SSID
* security
* pass

– Throws
* MqttException

• createAP

 public void createAP(java.lang.String SSID, java.lang.String security,
java.lang.String pass, java.lang.String channel) throws MqttException

– Description
Creates a new AP configuration profile

– Parameters
* SSID
* security
* pass
* channel

– Throws

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 38 of 58 20/01/16

* MqttException
• createFolder

 public int createFolder(java.lang.String path) throws MqttException

– Description
Makes a new folder in the SD card

– Parameters
* path – Path of the new folder

– Returns – 0 if the operation was successfully completed

• deliveryComplete

 public void deliveryComplete (IMqttDeliveryToken token)

– Parameters
* token

– See also
* MqttCallback#deliveryComplete(IMqttDeliveryToken)

• disconnect

 public void disconnect () throws MqttException

– Description
Disconnects the client

– Throws
* MqttException

• downloadFile

 public void downloadFile(java.lang.String srcDir, java.lang.String dstDir)
throws java.lang.Exception

– Description
Downloads a file from the SD card

– Parameters
* srcDir – SD card path of the file
* dstDir – Path where the file should be store

– Throws
* java.lang.Exception

• getDate

public java.util.Calendar getDate() throws MqttException

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 39 of 58 20/01/16

– Description

Gets the current EoT device time/date

– Returns
Calendar. The device current time/date

– Throws
* MqttException

• getFileSystemStructure

 public java.lang.String[] getFileSystemStructure(java.lang.String path)
throws MqttException

– Description
Gets the paths of the SD card content

– Returns
A String[] with all the file and folder paths

• isConnected

 public boolean isConnected ()

– Description
Checks if the client is connected

– Returns
true if the client is connected

• messageArrived

 public void messageArrived(java.lang.String topic, MqttMessage
messageArrived) throws java . lang . Exception

– Parameters
* topic
* messageArrived

– Throws
* java.lang.Exception

– See also
* MqttCallback#messageArrived(String, MqttMessage)

• publish

 public void publish(java.lang.String topicName, int qos, byte [] payload)
throws MqttException

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 40 of 58 20/01/16

– Description
Publishes / sends a message to an MQTT server

– Parameters
* topicName – the name of the topic to publish to
* qos – the quality of service to deliver the message at (0,1,2) (0 in
this case)
* payload – the set of bytes to send to the MQTT server

– Throws
* MqttException

• removeAll

 public int removeAll(java.lang.String path) throws MqttException

– Description
Removes a folder and its content recursively

– Parameters
* path – Path of the folder

– Returns
0 if the operation was successfully completed

• removeContent

 public int removeContent(java.lang.String path) throws
MqttException

– Description
Removes the content of a folder (or the SD card if /mnt/sdcard is
used)

– Parameters
* path – Path of the folder

– Returns – 0 if the operation was successfully completed

• removeFile

 public int removeFile(java.lang.String path) throws
MqttException

– Description
Removes a file from the SD card

– Parameters
* path – Path of the file to be removed

– Returns

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 41 of 58 20/01/16

0 if the operation was successfully completed

• resetAPConfig

 public void resetAPConfig () throws MqttException

– Description
Resets the AP con.guration to the default profile

– Throws
* MqttException

• setMainFrame

 public void setMainFrame(EoT_MainFrame frame)

– Description
Sets the main frame where results are displayed

– Parameters
* frame

• subscribe

 public void subscribe(java.lang.String topicName, int qos) throws
MqttException

– Description
Subscribes the client to a topic on an MQTT server

– Parameters
* topicName – to subscribe to (can be wild carded)
* qos – the maximum quality of service to receive messages at for
this subscription

– Throws
* MqttException

• unsubscribe

 public void unsubscribe(java.lang.String topicName) throws
MqttException

– Description
Unsubscribes the client from a topic

– Parameters
* topicName

– Throws
* MqttException

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 42 of 58 20/01/16

• updateDate

 public int updateDate(java.lang.String year, java.lang.String month,
java.lang.String day, java.lang.String hour, java.lang.String mins,
java.lang.String secs) throws MqttException

– Description
Changes the EoT device time/date

– Parameters
* year
* month
* day
* hour
* mins
* secs

– Throws
* MqttException

• uploadFile

 public int uploadFile(java.lang.String srcDir, java.lang.String dstName)
throws java.lang.Exception

– Description
Sends a file to the SD card

– Parameters
* srcDir – Path of the file
* dstName – SD card path where the file should be store

– Returns
0 if all is OK

– Throws
* java.lang.Exception

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 43 of 58 20/01/16

8.3. User Interface/Use of the Application

The application is divided into three tabbed panels. The first panel contains the
functionalities of a typical MQTT client. The second panel allows the user to
configure the EoT device and manage the files stored in the SD card. Finally, in
the last panel the user can request a snapshot from the EoT device camera.

MQTT Client panel

Configuration panel

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 44 of 58 20/01/16

Snapshot panel

Before connecting the EoT Control Mode Desktop application to the EoT device
the computer should be connected to the EoT device AP.

Once the computer is connected to the EoT device AP, the MQTT client can be
connected to the Pulga broker using the correct IP address and Port.

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 45 of 58 20/01/16

After that, it is possible to use the application as a common MQTT client,
performing topic subscriptions and publishing messages to topics.

In the Configuration panel there are options that allow the user to configure WiFi
and time and manage Flash and SD card memories.

The EoT device WiFi configuration includes options to:

• create an AP with new parameters,
• connect the device with an existing AP and
• reset the device AP settings to the default profile.

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 46 of 58 20/01/16

If the device's WiFi configuration is changed, the desktop application is restarted
and the user needs to connect the computer to the new device AP or the same
wireless network the device is connected to. Then, the client-broker connection
should be established again.

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 47 of 58 20/01/16

In order to set the current time values in the EoT device it is possible to use the
Date & Time settings provided in the desktop application. This allows the user to
get the current time of the computer and set them in the device. In addition, it is
possible to check the current time of the EoT device.

Finally, the SD card management options are divided into two parts. The first
part shows the directory tree of the SD card. Through the mouse right click the
user can delete the content of a directory (including the root directory), delete a
directory and its content, delete a file and create new directories. On the other
hand, the second part allows to upload and download files to and from the SD
card.

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 48 of 58 20/01/16

Note that when the EoT device is in AP mode (by default) only one client can be
connected to it. This is considered a desiarable feature in terms of security. On
the other hand, the Java application was tested with up to three clients. In order
to do this, a device (Android smartphone) was used to generate a Wifi AP, and
then the EoT device plus other two devices connected to that same Wifi and
exchanged messages that were brokered by the EoT device.

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 49 of 58 20/01/16

8.1. Problems Found/Known Issues

In some cases, the MQTT client sends the unsubscribe message through a
different socket than the socket used during connection. Since the broker uses
the socket number to identify each client, an unsubscribe message through a
different socket cannot be managed by it.

This behaviour only occurs when the client tries to send the unsubscribe message
to a reserved topic. Therefore, the broker unsubscribes a client from a reserved
topic when the operation is completed. This is not considered a problem in
practice but still it is reflected here for the sake of providing a more
comprehensive description.

8.2. To Do

The following two functionalities are implemented in the described EoT Control
Mode Desktop application but not in Pulga:

• Implement the snapshot retrieval when the new camera is ready.

• Implement all the functionality of the flash when the conflicts between the
WiFi chip and the flash memory are solved in hardware.

These functions will be implemented as hardware evolves.

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 50 of 58 20/01/16

9. CODE

The code of the EoT project can be found in the following GitLab repository:

https://gitlab.com/espiaran/EoT

The Pulga code can be found in the myriad applications directory of the WP3:

WorkPackage_3/myriad/apps/pulga_control_app

Pulga depends on Crypto, SDCardIO, WifiFunctions, and TimeFunctions modules.
These modules can be found under the WorkPackage_3/myriad/libs folder.

The Java Control Mode Desktop application is stored in the following directory:

WorkPackage_3/desktop/apps/EoT_control_mode_java

This application needs the Paho library that can be found in
WorkPackage_3/desktop/libs.

https://gitlab.com/espiaran/EoT

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 51 of 58 20/01/16

10. CONCLUSION

EoT focuses on developing an open platform for mobile embedded computer
vision. The building elements have been all optimized for size and cost.
Particularly, the device optimizes the processing power vs energy consumption
ratio. Apart from hardware and architectural elements, software and protocols
used have been also optimized. The publish/subscribe MQTT protocol has been
selected early on because of its low-power profile. While typical scenarios involve
(mobile) clients sending/receiving messages to/from a cloud-based broker, a
novel architecture is proposed in which each EoT device can act as a broker
itself. This provides a minimal way of communication that does not require any
cloud-based broker. In this way no data is initially sent through the Internet
which is also an advantage in terms of security. This basic form of
communication can be in turn used to establish additional modes of
communication should the application require it. It can, for example, be used to
configure the device and the embedded application to run on it, including
connection to an existing WiFi.

The proposed embedded MQTT broker, Pulga, offers the opportunity to install
and configure applications in the EoT device using a computer or a mobile device
with any MQTT client.

Finally, a client and the JAVA API for interacting with Pulga has been also
developed including all the main functionalities of a classic MQTT broker and the
new possibilities required by EoT.

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 52 of 58 20/01/16

11. ANNEX: PYTHON TESTS

The following shows how to use an Ubuntu-live-CD distribution to run the Python
tests. Note also that if the tests are carried out from inside a virtual machine the
WiFi connection will fail because different interface names are used.

Run Ubuntu 14.04 LTS Live CD

Install “Synaptic Package Manager” through the “Ubuntu Software Center”

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 53 of 58 20/01/16

Open Synaptic and see that dbus is installed by default

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 54 of 58 20/01/16

Install python-pip and all its dependencies using Synaptic

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 55 of 58 20/01/16

Copy the “test_pulga” folder with the python code and install “paho-mqtt” for python using:

>> sudo pip install paho-mqtt

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 56 of 58 20/01/16

Finally, run the test

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 57 of 58 20/01/16

12. REFERENCES

[1]. http://www.ti.com/product/cc3100mod?keyMatch=CC3100MOD&tisearc
h=Search-EN. Last accessed: 12th of January 2016.

[2]. Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The
case for vm-based cloudlets in mobile computing. Pervasive Computing,
IEEE, 8(4), 14-23.

[3]. Banks, A., & Gupta, R. (2014). MQTT Version 3.1. 1. OASIS Standard.
https://www.oasis-open.org/standards. Last accessed: 12th of January
2016.

[4]. Belli, L., Cirani, S., Ferrari, G., Melegari, L., & Picone, M. (2014). A
graph-based cloud architecture for big stream real-time applications in
the internet of things. In Advances in Service-Oriented and Cloud
Computing (pp. 91-105). Springer International Publishing.

[5]. Sutaria, R., & Govindachari, R. (2013). Making sense of interoperability:
Protocols and Standardization initiatives in IOT. 2nd International
Workshop on Computing and Networking for Internet of Things.

[6]. MQTT: a machine-to-machine (M2M)/Internet of Things connectivity
protocol. http://mqtt.org. Last accessed: 12th of January 2016.

[7]. Mosquitto: an open source message broker that implements the MQ
Telemetry Transport protocol. http://mosquitto.org/. Last accessed:
12th of January 2016.

[8]. http://eclipse.org/paho . Last accessed: 12th of January 2016.

http://www.ti.com/product/cc3100mod?keyMatch=CC3100MOD&tisearch=Search-EN
http://www.ti.com/product/cc3100mod?keyMatch=CC3100MOD&tisearch=Search-EN
https://www.oasis-open.org/standards
http://mqtt.org/
http://mosquitto.org/
http://eclipse.org/paho

D3.1 Desktop middleware API
reference documentation

H2020-643924-EoT

Page 58 of 58 20/01/16

13. GLOSSARY

AP Access Point
API Application Programming Interface
EoT Eyes of Things

HTTP Hypertext Transfer Protocol
IoT Internet of Things
MQTT Message Query Telemetry Transport

M2M Machine to Machine
OASIS Organization for the Advancement of Structured Information

Standards

PC Personal Computer
QoS Quality of Service
SD Secure Digital
SoC System on a Chip
SSID Service Set Identifier

SSL/TLS Secure Sockets Layer / Transport Layer Security
TCP/IP Transmission Control Protocol / Internet Protocol
WEP Wired Equivalent Privacy
WPA WiFi Protected Access

- End of document -

	1. Document Information
	2. Document History
	3. Abstract
	4. Table of Contents
	5. WiFi module
	6. MQTT Protocol and Approach
	6.1. Approach

	7. Pulga, a tiny open-source MQTT broker for flexible and secure IoT deployments
	7.1. API (MQTT Restricted Topics)
	7.2. Problems Found/Known Issues
	7.3. Test Cases
	7.3.1. Tests implemented
	test00ConnectToBroker
	test01SubscribeUnsubscribe
	test02UploadFile
	test03DownloadFile
	test04UploadDownloadFileAreEqual
	test05RequestSnapshot
	test06UpdateDate
	test07GetDate
	test08EOTMakeDirSD
	test09EOTListFilesSD
	test10EOTDeleteFileSD
	test11EOTDeleteDirSD
	test12UploadElf

	7.3.2. Expected output of the tests

	7.4. Using the Application/Screenshots
	7.5. To Do

	8. MQTT Client Application Developed in Java (JAVA API)
	8.1. Paho Java Client
	8.2. API Specification
	8.3. User Interface/Use of the Application
	8.1. Problems Found/Known Issues
	8.2. To Do

	9. Code
	10. Conclusion
	11. Annex: Python tests
	12. References
	13. Glossary

