
Pulga, a tiny open-source MQTT broker for flexible
and secure IoT deployments

Jose Luis Espinosa-Aranda, Noelia Vallez, Carlos Sanchez-Bueno,
Daniel Aguado-Araujo, Gloria Bueno, Oscar Deniz

VISILAB, University of Castilla-La Mancha
ETSI Industriales, Avda Camilo Jose Cela s/n

13071, Ciudad Real, Spain
Emails: {JoseL.Espinosa, Noelia.Vallez, Carlos.SanchezBueno, Daniel.Aguado, Gloria.Bueno, Oscar.Deniz}@uclm.es

Abstract—The Eyes of Things (EoT) EU H2020 project envis-
ages a computer vision platform that can be used both standalone
and embedded into more complex artifacts, particularly for
wearable applications, robotics, home products, surveillance etc.
The core hardware will be based on a number of technologies and
components that have been designed for maximum performance
of the always-demanding vision applications while keeping the
lowest energy consumption. An important functionality is to be
able to communicate with other devices that we use everyday (say,
configuring and controlling the EoT device from a tablet). Apart
from low-power hardware components, an efficient protocol is
necessary. Text-oriented protocols like HTTP are not appropriate
in this context. Instead, the lightweight publish/subscribe MQTT
protocol was selected. Still, the typical scenario is that of a device
that sends/receives messages, the messages being forwarded by
a cloud-based message broker. In this paper we propose a novel
approach in which each EoT device acts as an MQTT broker
instead of the typical cloud-based architecture. This eliminates
the need for an external Internet server, which not only makes
the whole deployment more affordable and simpler but also more
secure by default.

I. INTRODUCTION

Traditionally focused on factory automation, computer vi-
sion (i.e. software that automatically analyzes images to extract
content and meaning) is rapidly moving beyond academic
research and factories to many novel application scenarios.
Vision technology allows inferring big data from reality and
enables new types of interactivity. The possibilities are endless
in terms of wearable applications, augmented reality, surveil-
lance, ambient-assisted living, etc. Perhaps the best example
of successful computer vision is Microsoft’s Kinect, which
combined sensing hardware with computer vision techniques
to create a videogaming device. Kinect still stands as the fastest
selling consumer electronics device. Nevertheless, these and
other examples have generally involved large companies that
can afford the required specific designs. While some required
technologies are already mature and affordable, the fact is
that no flexible open platform for mobile embedded vision
is currently available. The main objective of the ongoing
Eyes of Things project (EoT) [1] is to build an optimized
core vision platform that can work independently and also
embedded into all types of artefacts (Figure 1). The envisioned
open hardware is to be combined with carefully designed APIs
that maximize inferred information per milliwatt and adapt the
quality of inferred results to each particular application. This

will not only mean more hours of continuous operation, it
will allow to create novel applications and services that go
beyond what current vision systems can do, which are either
personal/mobile or “always-on” but not both at the same time.
The platform is targeted at OEMs.

Fig. 1. EoT device

In the last few years cognitive applications and services
have been acknowledged as key drivers of innovation and
demand. The particular case of computer vision represents a
fundamental challenge. While image analysis and inference
requires massive computing power, the sheer volume of vi-
sual information that can be potentially generated by mobile
devices cannot be transferred to the cloud for processing.
This problem gets even worse when we consider emerging
sensing technologies like 3D and hyperspectral cameras. One
of the most recent attempts at alleviating this problem is the
cloudlets approach [2], which essentially proposes offloading
computation to local computers that are within one wireless
hop of the mobile device. These computers would play a role
similar to those in data centers. In particular, streams of image
data would be processed and analyzed in those computers,
providing relatively fast responses to the mobile device.

While the cloudlets approach is certainly an efficient way to
manage increasing demands of computing power, it falls short
in a number of aspects. First, streaming of raw sensor data out
of the mobile device is still being assumed. Power efficiency
then becomes a major issue, since wirelessly transmitting data
for remote computation can cost up to one million times
more energy per operation compared to processing locally

Oscar.Deniz
Texto escrito a máquina
Accepted for publication at SP15, 1st IEEE Workshop on Security and Privacy in the Cloud, Florence (Italy), September 30, 2015



in a device. Second, it also assumes that the end-user will
have to purchase and manage the local computer. Another
scenario is when this computer is part of some service pro-
vided in the premises (say, within a Hospital), but then the
problem becomes one of security, for raw sensor data would
be streamed to an externally-managed device. The philosophy
behind EoT is precisely focused on maximizing the mobile
device’s processing power vs energy consumption ratio as well
as ensuring secure use by individual users.

Within the overall aim of optimizing energy consumption,
an important component of the EoT device is the low-power
WiFi chip. The specific model selected for EoT1 provides
basic TCP/IP communication. A firmware in the device al-
lows sending/receiving of images, metadata and control/config
commands. Apart from hardware, an efficient communication
layer protocol is necessary. This protocol shall be used for
sending the results of computer vision processing, including
text, images or other types of data. HTTP is widely used, but
its text-oriented nature is not appropriate for resource-limited
devices. Instead, the MQTT protocol was selected early on [3].
MQTT is a lightweight publish/subscribe protocol designed
for use over TCP/IP networks which provides an efficient 1-
to-n communication mechanism. MQTT has been designed for
low bandwidth and unreliable or intermittent connections, thus
being a strong candidate in the Internet of Things scenario.
MQTT-enabled devices can open a connection and keep it open
using very little power.

The typical scenario is that of an embedded client which
connects to an MQTT server (message broker) in the cloud
[4] (Fig. 2). Again, in this scenario the brokering service has
to be purchased by the user, or else it has to be installed on
a locally-managed server. In this work, we propose a novel
architecture in which each EoT device can act as a broker.
This way no external server will be required, and data will not
be initially sent through the Internet. In fact, the configuration
device2 and the EoT node do not need to be in a WiFi network
infrastructure, since an ad hoc network is created by the EoT
device by default. This allows setting up applications in which
only the EoT and another device (say, a tablet) are involved.
That is in fact the default mode upon boot, with the additional
possibility of connecting to an existing WiFi network. As a
result, depending on the final application an EoT device can
be configured to work at 3 levels: 1) Single device mode (with
the only requirement of a configuration device, typically a
smartphone, tablet or laptop, connecting to the EoT-generated
ad-hoc WiFi), 2) Home, i.e. EoT device connecting to a local
WiFi infrastructure, and 3) EoT device connecting to the cloud
(through the WiFi infrastructure).

This paper is organized as follows. Section II describes the
approach followed while Section III shows its implementation.
Finally Section IV summarizes the conclusions of the article.

1CC3100 from Texas Instruments
2the ’configuration device’ is another device of every day use (smartphone,

tablet or PC) that is first used to configure and control the EoT-based device
or artefact

Fig. 2. Typical IoT MQTT communication model

II. APPROACH

By default, EoT devices create an ad-hoc WiFi. This is
necessary to allow connection to the configuration device even
without WiFi infrastructure. Note also that the EoT device
cannot by itself connect to an existing WiFi since it does not
have means for specifying SSIDs or network passwords. Each
EoT device creates a WiFi with univocal SSID and password.
The configuration device will have to enter those to establish
communication with it. This method allows a configuration
device to connect and configure devices one by one. During
configuration, an EoT device can be also made to connect
to a given existing WiFi (either from other EoT or from
infrastructure). This allows EoTs to connect to each other (with
or without infrastructure) and also allows EoTs to connect to
the Internet. Low-level security is handled by an encryption
protocol used in the ad-hoc WiFi (typically WPA). Horizontal
arrows in Figure 3 represent data communication to/from EoT
devices to/from a) Desktop computers and mobile devices such
as smartphones and tablets and b) Cloud services.

All Internet of Things implementations must consider low-
powered devices which need to function for months or years
without getting any power recharge. This makes the as-is use
of some of the existing Internet protocols to be sub-optimal.
Some protocols that are heavily used in Internet add substantial
overheads and a large number of device-to-cloud network
technologies and protocols are being developed by researchers
and start-ups. This has led to an enormous fragmentation,
described in [5] in the following terms:

“A number of different standardization bodies and
groups are actively working on creating more inter-
operable protocol stacks and open standards for the
Internet of Things. As we move from the HTTP,
TCP, IP stack to the IoT specific protocol stack we
are suddenly confronted with an acronym soup of
protocols- from the wireless protocols like ZigBee,
RFID, Bluetooth and BACnet to next generation
protocol standards such as 802.15.4e, 6LoWPAN,
RPL, CoAP etc.”

Currently efficient options exist for low-power connectivity
such as Zigbee and the more recent Bluetooth LE (low-energy).
The proposed approach will use TCP/IP over WiFi, since low-
power features present in the latest WiFi modules prepared



(1) Download interface App

EoT
device(s)

(2) Install CV application

(3) Configure CV application

(4) Runtime data communication

(5) (optional)
cloud processing

User

Fig. 3. User view

for the Internet of Things will be leveraged, having low-power
standby modes and short wake-up times.

As mentioned above, the proposed EoT device approach
uses the TCP/IP stack and the MQTT protocol [3] for commu-
nicating with other devices. MQTT-enabled devices can open
a connection, keep it open using very little power and receive
events or commands with as little as 2 bytes of overhead.
While HTTPS is slightly more efficient in terms of establishing
connection, MQTT is much more efficient during transmission,
see Table I (taken from [6]).

TABLE I. MQTT VS HTTPS, SEND PERFORMANCE

3G WiFi
HTTPS MQTT HTTPS MQTT

Messages/hour 1926 21685 5229 23184
% Battery/Message 0.00975 0.00082 0.00104 0.00016

MQTT v3.1.1 has become recently an OASIS Standard
[7]. One of the key aspects of MQTT is an extremely ef-
ficient and scalable data distribution model. While HTTP is
point-to-point, MQTT can distribute 1-1 or 1-to-n via the
publish/subscribe mechanism. For these reasons MQTT is
being increasingly used in mobile Apps (it is notably used
by Facebook Messenger) instead of existing unreliable push
notification mechanisms, see Figure 4. Devices can publish
data on a topic. Other devices can subscribe to a given topic
and they will receive the corresponding published data. The
broker is typically hosted on an enterprise server.

MQTT is at the time of writing one of the strongest
contenders in the IoT and M2M protocol wars. MQTT is a
sensible option for EoT for two reasons: a) it is a low-power
protocol and b) it provides an efficient 1-to-n communication
mechanism. 1-to-n communication is fundamental since it
allows multiple viewers, multiple (additional) processors and
cooperation between sensors. The typical MQTT scenario
would need a broker in the cloud. Alternatively, the smart-
phone/tablet/PC used for configuration could be used as a
broker, but this would mean that such device (typically our
personal smartphone or tablet) would have to be continuously
functioning as a gateway. Thus, we propose an architecture in

Fig. 4. MQTT publish/subscribe

which each EoT device can act as a broker. This way other EoT
devices can subscribe to a given EoT. The configuration device
can subscribe to the device and receive data too, although it can
also ’publish’ configuration commands for the device. In this
architecture each EoT device can effectively act as both client
and server, and the configuration device will only be woken
up by the appropriate EoT (think of an alarm notification), see
Figure 5.

Fig. 5. Proposed EoT MQTT architecture



Apart from efficient peer-to-peer cooperation, this model
allows building hierarchical processing networks. An example
is extracting salient features on a first level and recognition on
another. The first level of EoTs would compute salient features.
The second level would be subscribed to their results and
would perform object recognition. Finally, the configuration
device would be subscribed to second-tier devices to get
only the final result. Another possible hierarchy is object
detection, followed by object recognition and object tracking.
Finally, neural network-based techniques could be staged using
multiple EoT devices, both in parallel and sequentially.

Note again that the configuration device and the EoT node
do not need to be in a WiFi network infrastructure, since an
ad hoc connection can be established. In fact, EoT devices can
be integrated in a so-called MANET (Mobile ad hoc network)
[8]. Note also that the huge fan-out capabilities of MQTT also
make it ideal for massively parallel processing.

III. TESTED IMPLEMENTATION: PULGA

Developing an MQTT broker for an embedded device is
a challenging task. The development platform was the first
prototype built in the EoT project, see Figure 6. This platform
is based on the Myriad 2 chip by designed by Movidius.

Fig. 6. First EoT prototype. Main parts, top-right: WiFi module, top-left:
voltage level converter board, bottom: Myriad 2 development board, which
includes cameras, HDMI output, dipswitch, LEDs, debug connectors, etc.

Pulga, which means flea in Spanish, is the proposed tiny
MQTT broker implementation for EoT devices. Its name
derives from Mosquitto [9], which is a widely-used Open
Source MQTT v3.1 message broker written by Roger Light. As
opposed to Mosquitto, Pulga is a lightweight broker designed
to be run in embedded systems. Figure 7 shows an example of
the typical configuration that the proposed approach will have.

Fig. 7. Pulga broker

To develop Pulga it was necessary to start from the ground-
up implementing only the minimal parts of the protocol. In
particular, Pulga has the following MQTT protocol function-
ality implemented:

• Manage connection/disconnection of a client.

• Publish message.

• Multiple clients can connect to Pulga and sub-
scribe/unsubscribe to topics.

• Topics/subscriptions management. Currently Pulga
does not consider hierarchical topics (subtopics), only
basic topics.

• Keep alive functionality through the ping request.

With respect to other typical features of a MQTT broker
as defined by the protocol, there are some of them that are
not implemented because of the main focus of Pulga broker.
More specifically Pulga does not manage retained messages,
the definition of a session as clean or durable, or the “last will”
option, which allows a client to send a message that it wishes
the broker to forward when it disconnects unexpectedly.

Moreover MQTT defines three levels of Quality of Service
(QoS). The QoS defines how hard the broker/client will try
to ensure that a message is received. There are three levels
of QoS defined by the MQTT protocol, 0: The broker/client
will deliver the message once, with no confirmation, 1: The
broker/client will deliver the message at least once, with
confirmation required, and 2: The broker/client will deliver
the message exactly once by using a four step handshake. The
current Quality of Service (QoS) implemented in Pulga is the
QoS 0, with prevision of implementing the rest in the future.

As used in EoT, Pulga includes other functionality that
a typical MQTT broker does not have. The most important
is that it adds the possibility of defining ’restricted’ topics.
This option will allow to include new uses for the proposed
MQTT broker. When a Publish message is received Pulga first



detects if the topic is a ’restricted’ one using a simple parser
on the broker, changing the typical publish behaviour as the
programmer defines. This approach allows the user to have
additional functionality:

• Send/receive files. Considering that the MQTT pro-
tocol sends binary messages (the text of an MQTT
message is always serialized) it is possible to use an
MQTT message to send binary data without serial-
izing/deserializing it. This process would allow us to
upload the applications we want to run into the device
or send the captured images in the EoT device to a
client that requests them.

• Configuration of the EoT device. By defining a con-
figuration topic, Pulga is able to select the specific
preloaded executable to run3, to manage the different
EoT parameters and to configure the WiFi connection
of the device. A simple parser is used to manage the
messages published under the configuration topic (see
Figure 8).

• Configuration of access to a WiFi infrastructure. The
configuration device can send the required connection
data to the EoT device. This data can be stored in the
device and used by preloaded applications to connect
to an existing WiFi.

Fig. 8. Device configuration through MQTT

IV. CONCLUSIONS AND FUTURE WORK

EoT focuses on developing an open platform for mobile
embedded computer vision. The building elements have been

3EoT applications are stored in either Flash memory or the embedded SD
card. On boot, depending on the status of a dipswitch the EoT device will
either enter ’configuration mode’ (e.g. Pulga) or will directly run one of the
preloaded applications.

all optimized for size and cost. Particularly, the device opti-
mizes the processing power vs energy consumption ratio. Apart
from hardware and architectural elements, software and pro-
tocols used have been also optimized. The publish/subscribe
MQTT protocol has been selected early on because of its low-
power profile. While typical scenarios involve (mobile) clients
sending/receiving messages to/from a cloud-based broker, in
this paper a novel architecture is proposed in which each EoT
device can act as a broker itself. This provides a minimal
way of communication that does not require any cloud-based
broker. In this way no data is initially sent through the Internet
which is also an advantage in terms of security. This basic form
of communication can be in turn used to establish additional
modes of communication should the application require it. It
can, for example, be used to configure the device and the
embedded application to run on it, including connection to
an existing WiFi.

The proposed embedded MQTT broker, Pulga, offers the
opportunity to install and configure applications in the EoT
device using a computer or a mobile device with any MQTT
client. Pulga and sample clients will be soon released as open-
source software developed within the EU Eyes of Things
project. The roadmap for the future includes: a) continue
developing the prototype and extend it to implement QoS 1
and QoS 2 quality services and b) further develop customized
MQTT clients (for Android and desktop PC) tailored to the
needs of the EoT project.

ACKNOWLEDGEMENTS

This work has been supported by the European Union’s
Horizon 2020 Research and Innovation Programme under grant
agreement No. 643924 (EoT Project) [1].

REFERENCES

[1] “Eyes of things,” Last accessed: 26th of June 2015. [Online]. Available:
http://eyesofthings.eu

[2] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” Pervasive Computing, IEEE,
vol. 8, no. 4, pp. 14–23, Oct 2009.

[3] “Oasis standards - MQTT v3.1.1,” Last accessed: 3rd of July 2015.
[Online]. Available: https://www.oasis-open.org/standards

[4] L. Belli, S. Cirani, G. Ferrari, L. Melegari, and M. Picone, “A Graph-
Based Cloud Architecture for Big Stream Real-Time Applications in
the Internet of Things,” in Advances in Service-Oriented and Cloud
Computing, 2015, vol. 508, pp. 91–105.

[5] R. Sutaria and R. Govindachari, “Making sense of interoperability:
Protocols and Standardization initiatives in IoT,” in 2nd International
Workshop on Computing and Networking for Internet of Things, 2013.

[6] S. Nicholas, “Power Profiling: HTTPS Long Polling vs. MQTT with
SSL, on Android,” 2012.

[7] “MQTT: a machine-to-machine (M2M)/internet of things connectivity
protocol,” Last accessed: 26th of June 2015. [Online]. Available:
http://mqtt.org

[8] T. Zhuang, P. Baskett, and Y. Shang, “Managing Ad Hoc Networks
of Smartphones,” International Journal of Information and Education
Technology, vol. 3, no. 5, p. 540, 2013.

[9] “Mosquitto: an open source message broker that implements the
MQ telemetry transport protocol,” Last accessed: 26th of June 2015.
[Online]. Available: http://mosquitto.org/




