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OpenVX overview

 Foundational API for vision 
acceleration
– Focus on mobile and 

embedded systems

 Stand-alone or 
complementary to other 
libraries

 Enable efficient
implementations on 
different devices
– CPUs, GPUs, DSPs, many-

core accelerators



Accelerator template
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PULP
Parallel Ultra-Low-Power platform
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OpenVX programming model
 The OpenVX model is based on a directed acyclic graph of 

nodes (kernels), with data (images) as linkage

vx_image imgs[] = {
vxCreateImage(ctx, width, height, VX_DF_IMAGE_RGB),
vxCreateVirtualImage(graph, 0, VX_DF_IMAGE_U8),
…
vxCreateImage(ctx, width, height, VX_DF_IMAGE_U8),

};
vx_node nodes[] = {
vxColorConvertNode(graph, imgs[0], imgs[1]),
vxSobel3x3Node(graph, imgs[1], imgs[2], imgs[3]),
vxMagnitudeNode(graph, imgs[2], imgs[3], imgs[4]),
vxThresholdNode(graph, imgs[4], thresh,  imgs[5]),

};
vxVerifyGraph(graph);
vxProcessGraph(graph);

Virtual images are not required to actually reside in main memory
They define a data dependency between kernels, but they cannot be read/written
They are the main target of our optimization effortsAn OpenVX program must be verified to guarantee some mandatory properties:
Inputs and outputs compliant to the node interface
No cycles in the graph
Only a single writer node to any data object is allowed
Writes have higher priorities than reads.
Virtual image must be resolved into concrete types
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A first solution: using OpenCL 
to accelerate OpenVX kernels

 OpenCL is a commonly used programming model 
for many-core accelerators
 First solution: OpenVX kernel == OpenCL kernel

– When a node is selected for execution, the related 
OpenCL kernel is enqueued on the device

 Main limiting factor: memory bandwidth



OpenCL bandwidth
 Experiments performed on the STHORM evaluation board
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Our solution

 We realized an OpenVX framework for many-core 
accelerators coupling a tiling approach with 
algorithms for graph partition and scheduling

 Main goals:
– Reducing the memory bandwidth
– Maximize the accelerator efficiency

 Several steps are required:
– Tile size propagation
– Graph partitioning
– Node scheduling
– Buffer allocation
– Buffer sizing



Common access patterns
for image processing kernels

(A) POINT OPERATORS
Compute the value of each output point 
from the corresponding input point

Support: Basic tiling

(B) LOCAL NEIGHBOR  OPERATORS
Compute the value of a point in the
output image that corresponds to the 
input window
Support: Tile overlapping

(C) RECURSIVE NEIGHBOR OPERATORS
Like the previous ones, but also
consider the previously computed 
values in the output window
Support: Persistent buffer

(D) GLOBAL OPERATORS
Compute the value of a point in the 
output image using the whole input 
image
Support: Host exec / Graph partitioning

(E) GEOMETRIC OPERATORS
Compute the value of a point in the 
output image using a non-rectangular 
input window
Support: Host exec / Graph partitioning

(F) STATISTICAL OPERATORS
Compute any statistical functions of the 
image points

Support: Graph partitioning



Example (1)
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Example (2)
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Bandwidth reduction
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Speed-up w.r.t. OpenCL
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OpenVX + Virtual Platform

Platform
configuration

Application
mapping

Run-time
support
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