
Accelerating OpenVX Applications
on

Embedded Many-Core Accelerators
Giuseppe Tagliavini, DEI (University of Bologna)

Germain Haugou, IIS-ETHZ
Andrea Marongiu, DEI (University of Bologna) & IIS-ETHZ

Luca Benini, DEI (University of Bologna) & IIS-ETHZ

Outline

 Introduction
 OpenVX acceleration
 Work in progress

OpenVX overview

 Foundational API for vision
acceleration
– Focus on mobile and

embedded systems

 Stand-alone or
complementary to other
libraries

 Enable efficient
implementations on
different devices
– CPUs, GPUs, DSPs, many-

core accelerators

Accelerator template

Cluster Cluster… L2
Host

L3

Cluster-based
design

Cluster memory
(optional)

Multi-core
processor

DDR3 memory SoC design
(optional)

CC

PE PEPE PE PE PEPE …

L1 DMA HWS

Cluster
controller
(optional)

MPMD
Processing
Elements

Low latency
shared TCDM

memory

DMA
engine

(L1 ↔L3)

HW
synchronizer

Many-core accelerator

PULP
Parallel Ultra-Low-Power platform

L2
MEMORY

PERIPHERALS

BR
ID

G
E

BR
ID

G
E

SoC
VOLTAGE
DOMAIN
(0.8V)

INSTRUCTION BUS

I$ I$ I$PE
#0

PE
#1

PE
#N-1

BR
ID

G
ES

CLUSTER
VOLTAGE
DOMAIN
(0.5V-0.8V)

LOW LATENCY INTERCONNECT

DMA
...

...

CL
U

ST
ER

 B
U

S

PE
RI

PH
ER

AL

IN
TE

RC
O

N
N

EC
T

PE
RI

PH
ER

AL
S

to RMUs

...

RMU RMURMU

SRAM
#0

SRAM
#1

SRAM
#M-1

SCM
#0

SCM
#M-1

SCM
#1

SRAM VOLTAGE DOMAIN (0.5V – 0.8V)

OpenVX programming model
 The OpenVX model is based on a directed acyclic graph of

nodes (kernels), with data (images) as linkage

vx_image imgs[] = {
vxCreateImage(ctx, width, height, VX_DF_IMAGE_RGB),
vxCreateVirtualImage(graph, 0, VX_DF_IMAGE_U8),
…
vxCreateImage(ctx, width, height, VX_DF_IMAGE_U8),

};
vx_node nodes[] = {
vxColorConvertNode(graph, imgs[0], imgs[1]),
vxSobel3x3Node(graph, imgs[1], imgs[2], imgs[3]),
vxMagnitudeNode(graph, imgs[2], imgs[3], imgs[4]),
vxThresholdNode(graph, imgs[4], thresh, imgs[5]),

};
vxVerifyGraph(graph);
vxProcessGraph(graph);

Virtual images are not required to actually reside in main memory
They define a data dependency between kernels, but they cannot be read/written
They are the main target of our optimization effortsAn OpenVX program must be verified to guarantee some mandatory properties:
Inputs and outputs compliant to the node interface
No cycles in the graph
Only a single writer node to any data object is allowed
Writes have higher priorities than reads.
Virtual image must be resolved into concrete types

Outline

 Introduction
 OpenVX acceleration
 Work in progress

A first solution: using OpenCL
to accelerate OpenVX kernels

 OpenCL is a commonly used programming model
for many-core accelerators
 First solution: OpenVX kernel == OpenCL kernel

– When a node is selected for execution, the related
OpenCL kernel is enqueued on the device

 Main limiting factor: memory bandwidth

OpenCL bandwidth
 Experiments performed on the STHORM evaluation board

290

922

71
38

71

307

31

15

199

1391
779

1

10

100

1000

10000

M
B/

s

OpenCL Available BW

Our solution

 We realized an OpenVX framework for many-core
accelerators coupling a tiling approach with
algorithms for graph partition and scheduling

 Main goals:
– Reducing the memory bandwidth
– Maximize the accelerator efficiency

 Several steps are required:
– Tile size propagation
– Graph partitioning
– Node scheduling
– Buffer allocation
– Buffer sizing

Common access patterns
for image processing kernels

(A) POINT OPERATORS
Compute the value of each output point
from the corresponding input point

Support: Basic tiling

(B) LOCAL NEIGHBOR OPERATORS
Compute the value of a point in the
output image that corresponds to the
input window
Support: Tile overlapping

(C) RECURSIVE NEIGHBOR OPERATORS
Like the previous ones, but also
consider the previously computed
values in the output window
Support: Persistent buffer

(D) GLOBAL OPERATORS
Compute the value of a point in the
output image using the whole input
image
Support: Host exec / Graph partitioning

(E) GEOMETRIC OPERATORS
Compute the value of a point in the
output image using a non-rectangular
input window
Support: Host exec / Graph partitioning

(F) STATISTICAL OPERATORS
Compute any statistical functions of the
image points

Support: Graph partitioning

Example (1)

NESTED GRAPH

L3 L1 L3

MEMORY DOMAINS

ADAPTIVE TILINGACCELERATOR SUB-GRAPH HOST NODE

Example (2)

a

i1

b

S N P NM

c d e

i2

S N P NM …

o1 o2

i3 i4

PEs

CC

DMAin

DMAout

time

B0
B1
B2
B3

B5
B4

L3 access

L1 memory buffers
B0 and B5 use double buffering

Bandwidth reduction

34

307

36

8

24
44

8
15 18

359

22

290

922

71
38

71

307

31

15

199

1391
779

1

10

100

1000

10000

M
B/

s

OVX OpenCL Available BW

Speed-up w.r.t. OpenCL

6,73

3,86 3,46 3,50
2,81

5,64

2,92

1,00

3,12

5,04

9,61

Random
graph

Edge
detector

Object
detection

Super
resolution

FAST9 Disparity Pyramid Optical Canny Retina
preproc.

Disparity
S4

0,00

2,00

4,00

6,00

8,00

10,00

12,00

Outline

 Introduction
 OpenVX acceleration
 Work in progress

OpenVX + Virtual Platform

Platform
configuration

Application
mapping

Run-time
support

i G Sg
x

y

TestApplications
PE0 PEn

Mem

…
Virtual Platform

Run-time policies

ADRENALINE

http://www-micrel.deis.unibo.it/adrenaline/

THANKS!!!

Work supported by EU-funded research projects

	Accelerating OpenVX Applications�on�Embedded Many-Core Accelerators
	Outline
	OpenVX overview
	Accelerator template
	PULP�Parallel Ultra-Low-Power platform
	OpenVX programming model
	Outline
	A first solution: using OpenCL �to accelerate OpenVX kernels�
	OpenCL bandwidth�
	Our solution�
	Common access patterns�for image processing kernels
	Example (1)
	Example (2)
	Bandwidth reduction
	Speed-up w.r.t. OpenCL
	Outline
	OpenVX + Virtual Platform
	THANKS!!!

