

Platforms & Applications for Embedded Vision

Presenter:

Emanuel M. Popovici, Electrical & Electronic Engineering, University College Cork, Ireland

e.popovici@ucc.ie

The Spring 2015 Computing Systems Week, May 5-7, Oslo

Embedded Computer Vision

<u>"Vision is the art of seeing what is invisible to others.</u>" Jonathan Swift

University College Cork(1845)

- Largest University in the South of Ireland
- George Boole was UCCs first
 Prof. of Mathematics
- www.georgeboole.com
- When Boole meets Shannon-2nd
 iRISC workshop, 1-2 Sept'15

Presentation Overview

"I am always building totally useless gadgets just because I think they're fun to make", Claude Shannon

nD Embedded Vision

Our view

Embedded Systems Collection of small components brought together into one system to serve the purpose of a specific situation

nD Vision

Vision is a very powerful sensor generating information rich data. A multi dimensional(nD) vision is about sensing beyond human capabilities.

Vision Technology Departure from tradition with IR, Thermal, Lidar,

ultraviolet, ... enriched with a myriad of other sensors

Applications Requirements

Low Power is the norm

Applications for nD vision

Medical, entertainment, safety, security, automotive, education, environment,

Making Sensors Smart

Key is to provide low energy algorithms for image and sensor data processing, sensor fusion, machine learning, etc.

Efficient Vision systems rely on low energy Computation/Processing

Main Ingredients

Heterogeneous everything

Vision Sensors

CMOS cameras, Thermal imaging, IR, LIDAR, stereo vision, UV

Other sensors

Accelerometers, Temperature, Humidity, Microphones, Gases, PIR, Iuminosity, ...

(Wireless) Processing Platforms Inforce, Intel(Edison, Quark), Myriad, Rasberry Pi,

Inforce, Intel(Edison, Quark), Myriād, Rasberry P SparkCore, TI, Aldebaran, Custom(ARM), Mikroelektonika, Movidius,...

Image/Video Signal Processing

Low resolution to high resolution, low frame rate to high frame rate, low power to not-so-low power

Image/Video + Signal Processing

Sensor fusion for smarter, lower power vision systems

Human/Robot Interaction

Sensors and processing everywhere. Power consumption is the key

Support and particularly compilers are essential ingredients in the design process

Some (serious) Projects

To the subject areas

U-Play

Toys and Interfaces for interacting with toys for children with disabilities

Human - robot interactions Robot-robot interaction Visual and vision at core

i-BEES

Accelerometers, Temperature, Humidity, Microphones, Gases, PIR, Iuminosity, IR, ...

Safe/Secure Farm

	-

Inforce, Intel(Edison, Quark), Myriad, Rasberry Pi, SparkCore, TI, Aldebaran, Custom(ARM) Non-intrusive Health Status Inside the hive view Bee tracking More than bees

Detecting intruders using energy neutral vision? Detecting alive things

Interdisciplinarity generates best ideas

U-Play2: 2nd Prize, IEEE/IBM Smarter Planet Challenge, 2013

Team:

M. Donovan, J. Cunningham, F. Edwards-Murphy, T. Jezequel, T. Lambe, A. Zagoneanu, M. Bradley, J. McCarthy, E. Popovici

Main Project Aims and Goals

Image Processing

Cascaded Object Detectors

Detects objects whose aspect ratios don't show significance variance

Color Detection System

Using RGB imaging examine individual pixels to detect desirable colors

Cascaded Object Detection

Two cascaded object detectors have been created. One detects the Hexbug form the other detects the triangles form.

Color Detection

A color detection algorithm has been completed to a prototype stage but requires further refinement

Identification

Lines and triangles have been segmented. An algorithm to distinguish between different blobs is underway

Image Segmentation

Dividing an image into multiple parts to extract any relevant information from it

Hexbug U-Play Platform

U-Play Chassis & PCB

A smart microcontroller & PCB with sensors, transceiver & microphone mounted on a donor spider body.

Teensy 3.1 Microcontroller

Low cost, small ARM processor with large amount of I/O.

TI eZ430-RF2500 Radio

Connects Hexbugs in a mesh network to pass commands from users to a specific node.

A first step towards smart toys

Focus on toys

Cost efficiency

Explored the existing platforms and integrated the smart processing, communication, vision/sensor systems

Power consumption

Working transfer of data using the Texas Instruments eZ430-RF2500 modules

Learning from others how to play

Interacting with doctors, teachers, psychologists, gaming/computer scientists

Nao Robot and Hexbugs

Our toys

Hardware

Nao is a highly versatile, humanoid robot equipped with many sensors and actuators including: 2 cameras, tactile sensors and directional microphones to facilitate interaction with its environment.

Choregraphe Environment

Programming software with intuitive graphical user interface containing both standard and advanced functions for creating user defined movements and behaviors.

Toys and Kids

Applications for kids with physical and learning disabilities, autism, but also promoting engineering

Some implementations

IEEE ISTAS 2015

FLiR Lepton Thermal Camera

A new dimension for toys

Hardware

The Lepton transmits data over SPI and I2C to the microcontroller. The camera captures 80x60 pixel images through the reception of infrared radiation.

Raspberry Pi/ Spark core

Data transferred from the camera module is encoded, stored or communicated wirelessly

Cool Group

The images and videos captured feature an auto-scaling temperature function adapting to the hottest object in the room.

Implementations

I4Santa

System to catch Santa(using cameras, PIR sensor and imagination)

Other Interfaces

Speaker ID, gesture recognition, wireless commands, EOG/EMG/ECG interfaces

Sensor Fusion

Swarm of toys built; distributed processing; etc

1st Prize, IEEE/IBM Smarter Planet Challenge, 2014

Team:

F. Edwards Murphy, P. Whelan, L. Pinson, L. O'Leary, K. Troy, K. Hetherington, E. Lahiff, E. Popovici

A project funded by the Irish Research Council

Main Project Aims and Goals

Image and Video Processing (IWASI 2015)

Thermal camera

Detect beyond the hive: health, status, temperature, etc

System at a glance

Energy neutral operation

IR camera

Used for visualisation inside the hive

Thermal imaging

Cost, low power, operating range, algorithms for image and video analysis

3B(Big Brother for Bees) System

Solar powered, energy optimisation, accurate decisions, adaptive sensing algorithms

IR camera

Low power, event/user triggered, night vision, security,

etc

From Bees to Bits to Information

Colony Status and Weather Forecast (SAS2015)

Bee Counting and

tracking

Tom Goddard(USF), bee tracking

Tom Goddard(USF), bee tracking

Imagery ©2014 Google, Map data ©2014 Google Terms Privacy Report a problem 10 m

S-Farm: Smart/ Safe/ Secure Farming

Team:

Jack McCarthy, William Healy, Jonathan Hourihane, L. Marnane, E. Popovici

Main Project Aims and Goals s-Farm

Processing Smart processing requirement

System design

Smart radar detecting alive objects

Visualisation/Warning system

Key for usability

(Fraunhofer Institute)

Accuracy is key goal

Processing

Low power, real-time, heterogeneous vision

Real time decision support system

Processing Sensor fusion, high accuracy

Versatility

Cost, low power, operating range, algorithms for image and video analysis

Energy neutral system

Solar powered, energy optimisation, accurate decisions, adaptive sensing algorithms

Thank you!

http://sites.google.com/site/embedded0101

www.youtube.com : embedded.systems@ucc

E,popovici@ucc.ie

Always looking for sponsors, partners and collaborators